RFC44 Comments on NWG/RFC 33 and 36

0044 Comments on NWG/RFC 33 and 36. A. Shoshani, R. Long, A.Landsberg. April 1970. (Format: TXT=7381 bytes) (Updates RFC0036) (Status: UNKNOWN)

日本語訳
RFC一覧

参照

Network Working Group                                        A. Shoshani
Request for Comments: 44                                         R. Long
                                                            A. Landsberg
                                          System Development Corporation
                                                           10 April 1970


                     Comments on NWG/RFC 33 and 36

   Generally, we are satisfied with the suggestions for the new Host-
   to-Host protocol.  However, we think that a few refinements may be
   helpful.

   I.   It seems that there are two cases of reconnection:

     1. Reconnect from a socket in a local Host to another socket in the
        local Host.  This was referred to in RFC #33 as "switch".  The
        local sockets can belong to different processes (such as the
        "Login" process switching a connection to another process just
        created) or can belong to the same process (such as a process
        that accepts calls for connections on a particular socket, and
        after a connection is established switches to another of his
        sockets).

     2. Reconnect from a socket at a local Host to a socket in a foreign
        Host.

     We suggest separation of these two cases for the following reasons:
     a) Reconnection in Case 1 is necessary and useful, while the
        usefulness of Case 2 is still in doubt.

     b) Case 1 is simple to implement (at least conceptually) while Case
        2 involves an elaborate mechanism of commands because of the
        asynchronous nature of the network (four out of nine commands
        were suggested to handle Case 2 in RFC #36).

     Thus we think that at least in the first usage of the Host-to-Host
     protocol reconnection in Case 2 should be left out.  An additional
     system call (not a command) is therefore needed to permit Case 1,
     which is SWITCH  .

   II.  The CLOSE command as suggested in RFC #36 seems to be used for
        two purposes: block a connection and abort a connection.  To
        avoid ambiguity it would be desirable to have two commands:
        BLOCK and CLOSE.  As suggested in RFC #36, the response for both
        commands can be the SUSPEND command which acknowledges the
        reception of BLOCK or CLOSE commands.




Shoshani, et al.                                                [Page 1]

RFC 44                Comments on NWG/RFC 33 & 36             April 1970


   III. After a connection has been established, we see no reason for
        keeping the "foreign socket" in a local connection table.  Since
        there is a one-to-one correspondence between a link number of
        the foreign Host and a foreign socket number, we can use the
        link number in the commands.  Thus, except for the RFC command,
        all commands can use link numbers and therefore eliminate a 40-
        bit foreign socket number in every entry of the connection table
        (size being critical for some Hosts).  We note that if
        connections will be multiplexed over links as suggested in RFC
        #38, then the foreign socket would be needed in the connection
        table.

   IV.  In RFC#33 the term PORT was introduced.  Although this is
        private to every Host, we have a comment.  If ports are used
        such that there is a one-to-one correspondence between a port
        for some user and a socket, then ports are completely redundant.
        However, a Host may wish to multiplex ports over connections, in
        which case an additional mechanism is needed.

   To summarize the last four comments, we suggest that in the initial
   version the following system calls and commands will be used (most of
   them in RFC 33 and 36).

   System Calls:
   1) INITIATE  
   2) ACCEPT  
   3) SWITCH  
   4) LISTEN 
   5) CLOSE 
   6) TRANSMIT  
Commands: Commands 0, 1, 3, 4 as in RFC #36 (pp.5) and in addition: 1) BLOCK: BLK 2) CLOSE: CLS V. In addition to the above it seems necessary to decide on the following issues one way or the other together with the first version of the protocol (perhaps by setting a date for people to express their preferences and decide accordingly). All of these issues were mentioned in the meeting at UCLA on March 17, 1970, but were put aside. 1. "Double padding" - when a message does not end on a word boundary. Two possible solutions were mentioned: a) Hosts provide their padding in addition to the IMP's padding (double padding). Shoshani, et al. [Page 2] RFC 44 Comments on NWG/RFC 33 & 36 April 1970 b) Hosts make sure that all messages end on a word boundary by shifting their messages (when necessary) and adjusting the "marking" accordingly. 2. "Echoing" - there are three apparent possibilities: a) Echoing b) No echoing c) Optional Echoing - possibly a bit in the "Leader" can be used to designate this option. 3. "Code Conversion" - originally, BB&N suggested doing the conversion in the IMPs using ASCII-8 as the common code. This was rejected, mainly because of claims that ASCII-8 is not large enough for some uses, such as graphics. Also conversion in the IMPs may slow them down and take up space which could be used for buffers. We feel that it is very desirable to have a common code (even when the conversion is not done by the IMPs), such that all incoming text messages are in the same code and only one conversion table is needed. Outgoing text messages should be converted into this common code. Obviously, the option "no translation" should be possible for the purpose of binary data or data that is not representable in the common code. Since every known code can be considered to be too restrictive for some purposes, we suggest adopting a Network Common Code (NCC), and use all of the 256 possible characters (for 8-bit code) to include the "important" part of the union of the codes used throughout the network. VI. Our preference to the above issues is as follows: a) "Double padding" -it turns out to be easy for us to get our messages to be sent on a word boundary by shifting the leader of a message (and adjusting the "marking" accordingly) rather than the data. Thus we will prefer solution V.1.b). b) "Echoing" - we prefer no echoing. We think that character echoing should be managed locally. c) "Code Conversion" we prefer a Network Common Code. Initially, ASCII-8 can be used, and then expanded according to the needs of the Network. [ This RFC was put into machine readable form for entry ] [ into the online RFC archives by Alison De La Cruz 12/00 ] Shoshani, et al. [Page 3]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

IfActions

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る