RFC1970 日本語訳

1970 Neighbor Discovery for IP Version 6 (IPv6). T. Narten, E.Nordmark, W. Simpson. August 1996. (Format: TXT=197632 bytes) (Obsoleted by RFC2461) (Status: PROPOSED STANDARD)
プログラムでの自動翻訳です。
RFC一覧
英語原文

Network Working Group                                          T. Narten
Request for Comments: 1970                                           IBM
Category: Standards Track                                    E. Nordmark
                                                        Sun Microsystems
                                                              W. Simpson
                                                              Daydreamer
                                                             August 1996

Nartenがコメントのために要求するワーキンググループT.をネットワークでつないでください: 1970年のIBMカテゴリ: 標準化過程E.Nordmarkサン・マイクロシステムズW.シンプソン空想家1996年8月

               Neighbor Discovery for IP Version 6 (IPv6)

IPバージョン6のための隣人発見(IPv6)

Status of this Memo

このMemoの状態

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

このドキュメントは、インターネットコミュニティにインターネット標準化過程プロトコルを指定して、改良のために議論と提案を要求します。 このプロトコルの標準化状態と状態への「インターネット公式プロトコル標準」(STD1)の現行版を参照してください。 このメモの分配は無制限です。

Abstract

要約

   This document specifies the Neighbor Discovery protocol for IP
   Version 6.  IPv6 nodes on the same link use Neighbor Discovery to
   discover each other's presence, to determine each other's link-layer
   addresses, to find routers and to maintain reachability information
   about the paths to active neighbors.

このドキュメントはIPバージョン6にNeighborディスカバリープロトコルを指定します。 同じリンクの上のIPv6ノードは、互いの存在を発見して、互いのリンクレイヤアドレスを決定して、ルータを見つけて、経路の可到達性情報を活発な隣人に保守するのにNeighborディスカバリーを使用します。

Table of Contents

目次

   1.  INTRODUCTION.............................................    3
   2.  TERMINOLOGY..............................................    4
      2.1.  General.............................................    4
      2.2.  Link Types..........................................    7
      2.3.  Addresses...........................................    8
      2.4.  Requirements........................................    9
   3.  PROTOCOL OVERVIEW........................................   10
      3.1.  Comparison with IPv4................................   14
      3.2.  Supported Link Types................................   16
   4.  MESSAGE FORMATS..........................................   17
      4.1.  Router Solicitation Message Format..................   17
      4.2.  Router Advertisement Message Format.................   18
      4.3.  Neighbor Solicitation Message Format................   21
      4.4.  Neighbor Advertisement Message Format...............   23
      4.5.  Redirect Message Format.............................   25
      4.6.  Option Formats......................................   27
         4.6.1.  Source/Target Link-layer Address...............   28
         4.6.2.  Prefix Information.............................   29
         4.6.3.  Redirected Header..............................   31

1. 序論… 3 2. 用語… 4 2.1. 一般… 4 2.2. タイプをリンクしてください… 7 2.3. 扱います。 8 2.4. 要件… 9 3. 概要について議定書の中で述べてください… 10 3.1. IPv4との比較… 14 3.2. サポートしているリンクはタイプされます… 16 4. メッセージ形式… 17 4.1. ルータ懇願メッセージ・フォーマット… 17 4.2. ルータ通知メッセージ・フォーマット… 18 4.3. 隣人懇願メッセージ・フォーマット… 21 4.4. 隣人広告メッセージ・フォーマット… 23 4.5. メッセージ・フォーマットを向け直してください… 25 4.6. オプション形式… 27 4.6.1. 目標ソース/リンクレイヤアドレス… 28 4.6.2. 情報を前に置いてください… 29 4.6.3. ヘッダーを向け直します… 31

Narten, Nordmark & Simpson  Standards Track                     [Page 1]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[1ページ]。

         4.6.4.  MTU............................................   31
   5.  CONCEPTUAL MODEL OF A HOST...............................   32
      5.1.  Conceptual Data Structures..........................   33
      5.2.  Conceptual Sending Algorithm........................   35
      5.3.  Garbage Collection and Timeout Requirements.........   36
   6.  ROUTER AND PREFIX DISCOVERY..............................   37
      6.1.  Message Validation..................................   38
         6.1.1.  Validation of Router Solicitation Messages.....   38
         6.1.2.  Validation of Router Advertisement Messages....   38
      6.2.  Router Specification................................   39
         6.2.1.  Router Configuration Variables.................   39
         6.2.2.  Becoming An Advertising Interface..............   43
         6.2.3.  Router Advertisement Message Content...........   43
         6.2.4.  Sending Unsolicited Router Advertisements......   45
         6.2.5.  Ceasing To Be An Advertising Interface.........   45
         6.2.6.  Processing Router Solicitations................   46
         6.2.7.  Router Advertisement Consistency...............   47
         6.2.8.  Link-local Address Change......................   48
      6.3.  Host Specification..................................   48
         6.3.1.  Host Configuration Variables...................   48
         6.3.2.  Host Variables.................................   48
         6.3.3.  Interface Initialization.......................   50
         6.3.4.  Processing Received Router Advertisements......   50
         6.3.5.  Timing out Prefixes and Default Routers........   52
         6.3.6.  Default Router Selection.......................   53
         6.3.7.  Sending Router Solicitations...................   54
   7.  ADDRESS RESOLUTION AND NEIGHBOR UNREACHABILITY DETECTION.   55
      7.1.  Message Validation..................................   55
         7.1.1.  Validation of Neighbor Solicitations...........   55
         7.1.2.  Validation of Neighbor Advertisements..........   56
      7.2.  Address Resolution..................................   57
         7.2.1.  Interface Initialization.......................   57
         7.2.2.  Sending Neighbor Solicitations.................   57
         7.2.3.  Receipt of Neighbor Solicitations..............   58
         7.2.4.  Sending Solicited Neighbor Advertisements......   59
         7.2.5.  Receipt of Neighbor Advertisements.............   59
         7.2.6.  Sending Unsolicited Neighbor Advertisements....   61
         7.2.7.  Anycast Neighbor Advertisements................   62
         7.2.8.  Proxy Neighbor Advertisements..................   62
      7.3.  Neighbor Unreachability Detection...................   63
         7.3.1.  Reachability Confirmation......................   63
         7.3.2.  Neighbor Cache Entry States....................   64
         7.3.3.  Node Behavior..................................   66
   8.  REDIRECT FUNCTION........................................   68
      8.1.  Validation of Redirect Messages.....................   68
      8.2.  Router Specification................................   69
      8.3.  Host Specification..................................   70
   9.  EXTENSIBILITY - OPTION PROCESSING........................   71

4.6.4. MTU… 31 5. ホストの概念モデル… 32 5.1. 概念的なデータ構造… 33 5.2. 概念的な送付アルゴリズム… 35 5.3. ガーベージコレクションとタイムアウト要件… 36 6. ルータAND接頭語発見… 37 6.1. メッセージ合法化… 38 6.1.1. ルータ懇願メッセージの合法化… 38 6.1.2. ルータ通知メッセージの合法化… 38 6.2. ルータ仕様… 39 6.2.1. ルータ構成変数… 39 6.2.2. 広告になって、連結してください… 43 6.2.3. ルータ通知メッセージ内容… 43 6.2.4. 送付の求められていないルータ通知… 45 6.2.5. 広告であることをやめて、連結してください… 45 6.2.6. 処理ルータ懇願… 46 6.2.7. ルータ通知の一貫性… 47 6.2.8. リンクローカルアドレス変化… 48 6.3. 仕様をホスティングしてください… 48 6.3.1. 構成変数をホスティングしてください… 48 6.3.2. 変数をホスティングしてください… 48 6.3.3. 初期設定を連結してください… 50 6.3.4. 処理はルータ通知を受け取りました… 50 6.3.5. タイミングアウト接頭語とデフォルトルータ… 52 6.3.6. デフォルトルータ選択… 53 6.3.7. ルータ懇願を送ります… 54 7. 解決AND隣人UNREACHABILITYが検出であると扱ってください。 55 7.1. メッセージ合法化… 55 7.1.1. 隣人懇願の合法化… 55 7.1.2. 隣人広告の合法化… 56 7.2. 解決を扱ってください… 57 7.2.1. 初期設定を連結してください… 57 7.2.2. 懇願を隣人に送ります… 57 7.2.3. 隣人懇願の領収書… 58 7.2.4. 発信は隣人広告に請求しました… 59 7.2.5. 隣人広告の領収書… 59 7.2.6. 送付の求められていない隣人広告… 61 7.2.7. Anycast隣人広告… 62 7.2.8. プロキシ隣人広告… 62 7.3. 隣人Unreachability検出… 63 7.3.1. 可到達性確認… 63 7.3.2. 隣人はエントリー州をキャッシュします… 64 7.3.3. ノードの振舞い… 66 8. 機能を向け直してください… 68 8.1. 再直接のメッセージの合法化… 68 8.2. ルータ仕様… 69 8.3. 仕様をホスティングしてください… 70 9. 伸展性--オプション処理… 71

Narten, Nordmark & Simpson  Standards Track                     [Page 2]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[2ページ]。

   10.  PROTOCOL CONSTANTS......................................   72
   11.  SECURITY CONSIDERATIONS.................................   73
   REFERENCES...................................................   75
   AUTHORS' ADDRESSES...........................................   76
   APPENDIX A: MULTIHOMED HOSTS.................................   77
   APPENDIX B: FUTURE EXTENSIONS................................   78
   APPENDIX C: STATE MACHINE FOR THE REACHABILITY STATE.........   78
   APPENDIX D: IMPLEMENTATION ISSUES............................   80
      Appendix D.1: Reachability confirmations..................   80

10. 定数について議定書の中で述べてください… 72 11. セキュリティ問題… 73の参照箇所… 75人の作者のアドレス… 76 付録A: MULTIHOMEDホスト… 77 付録B: 今後の拡大… 78 付録C: 可到達性状態にマシンを述べてください… 78 付録D: 実装問題… 80 付録D.1: 可到達性確認… 80

1.  INTRODUCTION

1. 序論

   This specification defines the Neighbor Discovery (ND) protocol for
   Internet Protocol Version 6 (IPv6).  Nodes (hosts and routers) use
   Neighbor Discovery to determine the link-layer addresses for
   neighbors known to reside on attached links and to quickly purge
   cached values that become invalid.  Hosts also use Neighbor Discovery
   to find neighboring routers that are willing to forward packets on
   their behalf.  Finally, nodes use the protocol to actively keep track
   of which neighbors are reachable and which are not, and to detect
   changed link-layer addresses.  When a router or the path to a router
   fails, a host actively searches for functioning alternates.

この仕様はインターネットプロトコルバージョン6(IPv6)のためにNeighborディスカバリー(ノースダコタ)プロトコルを定義します。 ノード(ホストとルータ)は、付属リンクの上に住んでいて、すぐに除くのが知られている隣人のためのリンクレイヤアドレスが無効になる値をキャッシュしたことを決定するのにNeighborディスカバリーを使用します。 また、ホストは、それらに代わってパケットを進めても構わないと思っている隣接しているルータを見つけるのにNeighborディスカバリーを使用します。 最終的に、ノードは、どの隣人が届いているか、そして、どれがないかは活発に動向をおさえて、変えられたリンクレイヤアドレスを検出するのにプロトコルを使用します。 ルータへのルータか経路が失敗すると、ホストは活発に機能している補欠を捜し求めます。

   Unless specified otherwise (in a document that covers operating IP
   over a particular link type) this document applies to all link types.
   However, because ND uses link-layer multicast for some of its
   services, it is possible that on some link types (e.g., NBMA links)
   alternative protocols or mechanisms to implement those services will
   be specified (in the appropriate document covering the operation of
   IP over a particular link type).  The services described in this
   document that are not directly dependent on multicast, such as
   Redirects, Next-hop determination, Neighbor Unreachability Detection,
   etc., are expected to be provided as specified in this document.  The
   details of how one uses ND on NBMA links is an area for further
   study.

別の方法で(特定のリンク型で操作IPをカバーするドキュメントで)指定されない場合、このドキュメントは、タイプを皆、リンクするのに当てはまります。 しかしながら、ノースダコタがサービスのいくつかにリンクレイヤマルチキャストを使用するので、いくつかのリンク型(例えば、NBMAリンク)の代替のプロトコルかメカニズムの上では、それらのサービスを実装するのが指定されているのは(特定のリンク型でIPの操作をカバーする適切なドキュメントの)、可能です。 本書では指定されるように本書では説明された直接Redirectsなどのマルチキャスト、Next-ホップ決断、Neighbor Unreachability Detectionなどに依存しないサービスが提供されると予想されます。 1つがNBMAリンクの上にどうノースダコタを使用するかに関する詳細はさらなる研究への領域です。

   The authors would like to acknowledge the contributions the IPNGWG
   working group and, in particular, (in alphabetical order) Ran
   Atkinson, Jim Bound, Scott Bradner, Alex Conta, Stephen Deering,
   Francis Dupont, Robert Elz, Robert Gilligan, Robert Hinden, Allison
   Mankin, Dan McDonald, Charles Perkins, Matt Thomas, and Susan
   Thomson.

そして、作者が貢献を承諾したがっている、IPNGWGワーキンググループ、(アルファベット順に)アトキンソン、ジムBound、スコット・ブラドナー・アレックス・コンタ、スティーブン・デアリング、フランシス・デュポン、ロバートElz、ロバート・ギリガン、ロバートHinden、アリソン・マンキン、ダン・マクドナルド、チャールズ・パーキンス、マット・トーマス、およびスーザン・トムソンを特に車で送りました。

Narten, Nordmark & Simpson  Standards Track                     [Page 3]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[3ページ]。

2.  TERMINOLOGY

2. 用語

2.1.  General

2.1. 一般

   IP          - Internet Protocol Version 6.  The terms IPv4 and IPv6
                 are used only in contexts where necessary to avoid
                 ambiguity.

IP--インターネットプロトコルバージョン6。 用語のIPv4とIPv6はあいまいさを避けるのに必要であるところで文脈だけで使用されます。

   ICMP        - Internet Message Control Protocol for the Internet
                 Protocol Version 6.  The terms ICMPv4 and ICMPv6 are
                 used only in contexts where necessary to avoid
                 ambiguity.

ICMP--インターネットプロトコルバージョン6のためのインターネットメッセージ制御プロトコル。 用語のICMPv4とICMPv6はあいまいさを避けるのに必要であるところで文脈だけで使用されます。

   node        - a device that implements IP.

ノード--IPを実装するデバイス。

   router      - a node that forwards IP packets not explicitly
                 addressed to itself.

ルータ--明らかにそれ自体に扱われなかったIPパケットを進めるノード。

   host        - any node that is not a router.

ホスト--ルータでないどんなノード。

   upper layer - a protocol layer immediately above IP.  Examples are
                 transport protocols such as TCP and UDP, control
                 protocols such as ICMP, routing protocols such as OSPF,
                 and internet or lower-layer protocols being "tunneled"
                 over (i.e., encapsulated in) IP such as IPX, AppleTalk,
                 or IP itself.

上側の層--IPのすぐ上のプロトコル層。 例はTCPやUDP、制御プロトコルなどのICMP、ルーティング・プロトコルなどのOSPFやインターネットやIPX、AppleTalkなどの(すなわち、要約されます)IP、またはIPの上でそれ自体で「トンネルを堀られる」下位層プロトコルなどのトランスポート・プロトコルです。

   link        - a communication facility or medium over which nodes can
                 communicate at the link layer, i.e., the layer
                 immediately below IP.  Examples are Ethernets (simple
                 or bridged), PPP links, X.25, Frame Relay, or ATM
                 networks as well as internet (or higher) layer
                 "tunnels", such as tunnels over IPv4 or IPv6 itself.

リンクしてください--ノードがすなわち、リンクレイヤ、IPのすぐ下の層で交信できる通信機器か媒体。 例は、インターネット(より高い)層の「トンネル」と同様にEthernets(簡単であるかブリッジしている)、PPPリンク、X.25、Frame Relay、またはATMネットワークです、IPv4かIPv6自身の上のトンネルなどのように。

   interface   - a node's attachment to a link.

連結してください--リンクへのノードの付属。

   neighbors   - nodes attached to the same link.

隣人--ノードは同じリンクに付きました。

   address     - an IP-layer identifier for an interface or a set of
                 interfaces.

アドレス--インタフェースかインタフェースのセットのためのIP-層の識別子。

   anycast address
               - an identifier for a set of interfaces (typically
                 belonging to different nodes).  A packet sent to an
                 anycast address is delivered to one of the interfaces
                 identified by that address (the "nearest" one,
                 according to the routing protocol's measure of
                 distance).  See [ADDR-ARCH].

anycastアドレス--1セットのインタフェース(異なったノードに通常属す)のための識別子。 anycastアドレスに送られたパケットはそのアドレス(ルーティング・プロトコルの距離の基準に従った“nearest"1)によって特定されたインタフェースの1つに提供されます。 [ADDR-アーチ]を見てください。

Narten, Nordmark & Simpson  Standards Track                     [Page 4]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[4ページ]。

                 Note that an anycast address is syntactically
                 indistinguishable from a unicast address.  Thus, nodes
                 sending packets to anycast addresses don't generally
                 know that an anycast address is being used.  Throughout
                 the rest of this document, references to unicast
                 addresses also apply to anycast addresses in those
                 cases where the node is unaware that a unicast address
                 is actually an anycast address.

anycastアドレスがユニキャストアドレスからシンタクス上区別がつかないことに注意してください。 したがって、一般に、anycastアドレスにパケットを送るノードは、anycastアドレスが使用されているのを知りません。 また、このドキュメントの残りの間中、ユニキャストアドレスの参照はノードがユニキャストアドレスが実際にanycastアドレスであることを気づかないそれらの場合におけるanycastアドレスに適用されます。

   prefix      - a bit string that consists of some number of initial
                 bits of an address.

接頭語--それを少し結ぶのはアドレスの何らかの数の初期のビットから成ります。

   link-layer address
               - a link-layer identifier for an interface.  Examples
                 include IEEE 802 addresses for Ethernet links and E.164
                 addresses for ISDN links.

リンクレイヤアドレス--インタフェースのためのリンクレイヤ識別子。 例はイーサネットリンクへのIEEE802アドレスとISDNリンクへのE.164アドレスを含んでいます。

   on-link     - an address that is assigned to an interface on a
                 specified link.  A node considers an address to be on-
                 link if:

オンリンク--指定されたリンクでインタフェースに割り当てられるアドレス。 ノードが、オンであるアドレスがリンクされると考える、:

                   - it is covered by one of the link's prefixes, or

- またはそれがリンクの接頭語の1つでカバーされている。

                   - a neighboring router specifies the address as the
                     target of a Redirect message, or

- または隣接しているルータがRedirectメッセージの目標としてアドレスを指定する。

                   - a Neighbor Advertisement message is received for
                     the (target) address, or

- または(目標)アドレスのためにNeighbor Advertisementメッセージを受け取る。

                   - any Neighbor Discovery message is received from the
                     address.

- アドレスからどんなNeighborディスカバリーメッセージも受け取ります。

   off-link    - the opposite of "on-link"; an address that is not
                 assigned to any interfaces on the specified link.

オフリンク--「リンク」の正反対。 指定されたリンクの上のどんなインタフェースにも割り当てられないアドレス。

   longest prefix match
               - The process of determining which prefix (if any) in a
                 set of prefixes covers a target address.  A target
                 address is covered by a prefix if all of the bits in
                 the prefix match the left-most bits of the target
                 address.  When multiple prefixes cover an address, the
                 longest prefix is the one that matches.

最も長い接頭語マッチ--接頭語のセットでどの接頭語(もしあれば)を決定するかプロセスはあて先アドレスをカバーしています。 優に接頭語のビットがあて先アドレスの最も左のビットに合っているなら、あて先アドレスは接頭語でカバーされています。 複数の接頭語がアドレスをカバーするとき、最も長い接頭語は合っているものです。

   reachability
               - whether or not the one-way "forward" path to a neighbor
                 is functioning properly.  In particular, whether
                 packets sent to a neighbor are reaching the IP layer on
                 the neighboring machine and are being processed

可到達性--隣人への一方通行の「前進」の経路は適切に機能であるかどうか パケットが隣人に発信したかどうかが、特に、隣接しているマシンの上のIP層に達していて、処理されています。

Narten, Nordmark & Simpson  Standards Track                     [Page 5]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[5ページ]。

                 properly by the receiving IP layer.  For neighboring
                 routers, reachability means that packets sent by a
                 node's IP layer are delivered to the router's IP layer,
                 and the router is indeed forwarding packets (i.e., it
                 is configured as a router, not a host).  For hosts,
                 reachability means that packets sent by a node's IP
                 layer are delivered to the neighbor host's IP layer.

受信IPで適切に層にしてください。 隣接しているルータにおいて、パケットがノードのIP層で送った可到達性手段はルータのIP層に提供されます、そして、本当に、ルータはパケットを送っています(すなわち、それはホストではなく、ルータとして構成されます)。 ホストに関しては、パケットがノードのIP層で送った可到達性手段は隣人ホストのIP層に提供されます。

   packet      - an IP header plus payload.

パケット--IPヘッダーとペイロード。

   link MTU    - the maximum transmission unit, i.e., maximum packet
                 size in octets, that can be conveyed in one piece over
                 a link.

MTUをリンクしてください--マキシマム・トランスミッション・ユニット、すなわち、八重奏における無事にリンクの上に伝えることができる最大のパケットサイズ。

   target      - an address about which address resolution information
                 is sought, or an address which is the new first-hop
                 when being redirected.

目標--アドレス解決情報が求められるアドレス、または向け直されると最初に、新しいホップであるアドレス。

   proxy       - a router that responds to Neighbor Discovery query
                 messages on behalf of another node.  A router acting on
                 behalf of a mobile node that has moved off-link could
                 potentially act as a proxy for the mobile node.

プロキシ--別のノードを代表してNeighborディスカバリー質問メッセージに応じるルータ。 オフリンクを動かしたモバイルノードを代表して行動するルータはモバイルノードのためのプロキシとして潜在的に務めることができました。

   ICMP destination unreachable indication
               - an error indication returned to the original sender of
                 a packet that cannot be delivered for the reasons
                 outlined in [ICMPv6].  If the error occurs on a node
                 other than the node originating the packet, an ICMP
                 error message is generated.  If the error occurs on the
                 originating node, an implementation is not required to
                 actually create and send an ICMP error packet to the
                 source, as long as the upper-layer sender is notified
                 through an appropriate mechanism (e.g., return value
                 from a procedure call).  Note, however, that an
                 implementation may find it convenient in some cases to
                 return errors to the sender by taking the offending
                 packet, generating an ICMP error message, and then
                 delivering it (locally) through the generic error
                 handling routines.

ICMPの目的地の手の届かない指示--誤り表示は[ICMPv6]に概説された理由で提供できないパケットの元の送り主に戻りました。 誤りがパケットを溯源しながらノード以外のノードに発生するなら、ICMPエラーメッセージは発生しています。 誤りが起因するノードに発生するなら、実装は実際にICMP誤りパケットをソースに作成して、送るのに必要ではありません、上側の層の送付者に適切な手段を通して通知される(例えば、手順呼び出しから値を返してください)限り。 しかしながら、いくつかの場合、怒っているパケットを取ることによって誤りを送付者に返すのが便利であることが実装によってわかるかもしれないことに注意してください、ジェネリックエラー処理ルーチンでICMPエラーメッセージを生成して、次に、(局所的に)それを提供して。

   random delay
               - when sending out messages, it is sometimes necessary to
                 delay a transmission for a random amount of time in
                 order to prevent multiple nodes from transmitting at
                 exactly the same time, or to prevent long-range
                 periodic transmissions from synchronizing with each
                 other [SYNC].  When a random component is required, a
                 node calculates the actual delay in such a way that the

無作為の遅れ--メッセージを出すとき、複数のノードがまさに同じ頃に伝わるのを防ぐために無作為の時間トランスミッションを遅らせるか、または互いに同期した[SYNC]から長期の周期的なトランスミッションを防ぐのが時々必要です。 いつ無作為のコンポーネントが必要なaノードであるかは、実際がそのような方法でそれを遅らせると見込みます。

Narten, Nordmark & Simpson  Standards Track                     [Page 6]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[6ページ]。

                 computed delay forms a uniformly-distributed random
                 value that falls between the specified minimum and
                 maximum delay times.  The implementor must take care to
                 insure that the granularity of the calculated random
                 component and the resolution of the timer used are both
                 high enough to insure that the probability of multiple
                 nodes delaying the same amount of time is small.

計算された遅れは指定された最小の、そして、最大の遅れ回で下落する一様に分散している無作為の値を形成します。 作成者は、計算された無作為のコンポーネントの粒状と使用されるタイマの解像度がともに複数のノードが同じ時間を遅らせるという確率がわずかであることを保障できるくらい高いのを保障するために注意しなければなりません。

   random delay seed
               - If a pseudo-random number generator is used in
                 calculating a random delay component, the generator
                 should be initialized with a unique seed prior to being
                 used.  Note that it is not sufficient to use the
                 interface token alone as the seed, since interface
                 tokens will not always be unique.  To reduce the
                 probability that duplicate interface tokens cause the
                 same seed to be used, the seed should be calculated
                 from a variety of input sources (e.g., machine
                 components) that are likely to be different even on
                 identical "boxes".  For example, the seed could be
                 formed by combining the CPU's serial number with an
                 interface token.

無作為の遅れ種子--疑似乱数生成器が無作為の遅れコンポーネントについて計算する際に使用されるなら、ジェネレータは使用される前のユニークな種子で初期化されるべきです。 種子として単独でインタフェーストークンを使用するのが十分でないことに注意してください、インタフェーストークンがいつもユニークになるというわけではないので。 写しインタフェーストークンで同じ種子を使用するという確率を減少させるために、種子はさまざまな同じ「箱」でさえ異なる傾向がある入力ソース(例えば、マシンの部品)から計算されるべきです。 例えば、CPUの通し番号をインタフェーストークンに結合することによって、種子を形成できるでしょう。

2.2.  Link Types

2.2. リンク型

   Different link layers have different properties.  The ones of concern
   to Neighbor Discovery are:

異なったリンクレイヤには、異なった特性があります。 Neighborディスカバリーに重要なものは以下の通りです。

   multicast      - a link that supports a native mechanism at the link
                    layer for sending packets to all (i.e., broadcast)
                    or a subset of all neighbors.

マルチキャスト--送付のためのリンクレイヤの固有のメカニズムがすべて(すなわち、放送する)へのパケットかすべての隣人の部分集合であるとサポートするリンク。

   point-to-point - a link that connects exactly two interfaces.  A
                    point-to-point link is assumed to have multicast
                    capability and have a link-local address.

ポイントツーポイント--ちょうど2つのインタフェースを接続するリンク。 マルチキャスト能力を持っていて、ポイントツーポイント接続がリンクローカルアドレスを持っていると思われます。

   non-broadcast multi-access (NBMA)
                  - a link to which more than two interfaces can attach,
                    but that does not support a native form of multicast
                    or broadcast (e.g., X.25, ATM, frame relay, etc.).
                    Note that all link types (including NBMA) are
                    expected to provide multicast service for IP (e.g.,
                    using multicast servers), but it is an issue for
                    further study whether ND should use such facilities
                    or an alternate mechanism that provides the
                    equivalent ND services.

非放送マルチアクセス(NBMA)--リンクがどの2つ以上のインタフェースに付くことができるか、しかし、それは、ネイティブのフォームのマルチキャストをサポートもしませんし、(例えば、X.25、ATM、フレームリレーなど)を放送もしません。 ノースダコタがそのような施設か同等なノースダコタのサービスを提供する代替のメカニズムを使用するべきであるか否かに関係なく、すべてのリンク型(NBMAを含んでいます)がIP(例えば、マルチキャストサーバを使用する)にマルチキャストサービスを提供すると予想されますが、それがさらなる研究への問題であることに注意してください。

   shared media   - a link that allows direct communication among a

共有されたメディア--aの中にダイレクトコミュニケーションを許容するリンク

Narten, Nordmark & Simpson  Standards Track                     [Page 7]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[7ページ]。

                    number of nodes, but attached nodes are configured
                    in such a way that they do not have complete prefix
                    information for all on-link destinations.  That is,
                    at the IP level, nodes on the same link may not know
                    that they are neighbors; by default, they
                    communicate through a router.  Examples are large
                    (switched) public data networks such as SMDS and B-
                    ISDN.  Also known as "large clouds".  See [SH-
                    MEDIA].

ノードの数、添付のノードだけがそれらにはリンクの上のすべての目的地のための完全な接頭語情報がないような方法で構成されます。 すなわち、IPレベルでは、同じリンクの上のノードは、彼らが隣人であることを知らないかもしれません。 デフォルトで、彼らはルータを通って交信します。 例はSMDSとB ISDNなどの大きい(切り換えられる)公衆データネットワークです。 また、「大きい雲」として、知られています。 [SHメディア]を見てください。

   variable MTU   - a link that does not have a well-defined MTU (e.g.,
                    IEEE 802.5 token rings).  Many links (e.g.,
                    Ethernet) have a standard MTU defined by the link-
                    layer protocol or by the specific document
                    describing how to run IP over the link layer.

可変MTU--明確なMTU(例えばIEEE802.5トークンは鳴る)がないリンク。 多くのリンク(例えば、イーサネット)で、リンク層のプロトコルかリンクレイヤにIPを経営している方法を説明する特定のドキュメントは標準のMTUを定義します。

   asymmetric reachability
                  - a link where non-reflexive and/or non-transitive
                    reachability is part of normal operation.  (Non-
                    reflexive reachability means packets from A reach B
                    but packets from B don't reach A.  Non-transitive
                    reachability means packets from A reach B, and
                    packets from B reach C, but packets from A don't
                    reach C.)  Many radio links exhibit these
                    properties.

非対称の可到達性--非反動的な、そして/または、非他動詞の可到達性が通常の操作の一部であるリンク。 (非再帰の可到達性は、AからのパケットがBに達することを意味しますが、BからのパケットはA.に達しません。Non-他動詞の可到達性は、AからのパケットがBに達することを意味します、そして、BからのパケットはCに達しますが、AからのパケットはCに達しません。) 多くのラジオリンクがこれらの特性を示します。

2.3.  Addresses

2.3. アドレス

   Neighbor Discovery makes use of a number of different addresses
   defined in [ADDR-ARCH], including:

隣人ディスカバリーは[ADDR-ARCH]で定義された、多くの異なったアドレス、包含を利用します:

   all-nodes multicast address
               - the link-local scope address to reach all nodes.
                 FF02::1

オールノードマルチキャストアドレス--すべてのノードに達するリンクローカルの範囲アドレス。 FF02:、:1

   all-routers multicast address
               - the link-local scope address to reach all routers.
                 FF02::2

オールルータマルチキャストアドレス--すべてのルータに達するリンクローカルの範囲アドレス。 FF02:、:2

   solicited-node multicast address
               - a link-local scope multicast address that is computed
                 as a function of the solicited target's address.  The
                 solicited-node multicast address is formed by taking
                 the low-order 32 bits of the target IP address and
                 appending those bits to the 96-bit prefix
                 FF02:0:0:0:0:1 to produce a multicast address within
                 the range FF02::1:0:0 to FF02::1:FFFF:FFFF.  For
                 example, the solicited node multicast address

請求されたノードマルチキャストアドレス--請求された目標のアドレスの機能として計算されるリンクローカルの範囲マルチキャストアドレス。 請求されたノードマルチキャストアドレスは目標IPアドレスの下位の32ビット取って、96ビットの接頭語FF02にそれらのビットを追加することによって、形成されます:、0:0:1、0:0:範囲FF02の中でマルチキャストアドレスを製作するためには以下のこと、:FF02への1:0:0:、:1:FFFF:FFFF。 例えば、請求されたノードマルチキャストアドレス

Narten, Nordmark & Simpson  Standards Track                     [Page 8]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[8ページ]。

                 corresponding to the IP address 4037::01:800:200E:8C6C
                 is FF02::1:200E:8C6C.  IP addresses that differ only in
                 the high-order bits, e.g., due to multiple high-order
                 prefixes associated with different providers, will map
                 to the same solicited-node address thereby reducing the
                 number of multicast addresses a node must join.

IPに対応する、4037を扱ってください:、:01:800:200E: 8C6CはFF02です:、:1:200E: 8C6C。 高位のビットだけにおいて異なるIPアドレスは例えば、異なったプロバイダーに関連している複数の高位接頭語のためノードが接合しなければならないマルチキャストアドレスについて数を減らすことをその結果、同じ請求されたノードアドレスに写像するでしょう。

   link-local address
               - a unicast address having link-only scope that can be
                 used to reach neighbors.  All interfaces on routers
                 MUST have a link-local address.  Also, [ADDRCONF]
                 requires that interfaces on hosts have a link-local
                 address.

リンクローカルアドレス--隣人に届くのに使用できるリンクだけ範囲を持っているユニキャストアドレス。 ルータのすべてのインタフェースには、リンクローカルアドレスがなければなりません。 また、[ADDRCONF]は、ホストの上のインタフェースにはリンクローカルアドレスがあるのを必要とします。

   unspecified address
               - a reserved address value that indicates the lack of an
                 address (e.g., the address is unknown).  It is never
                 used as a destination address, but may be used as a
                 source address if the sender does not (yet) know its
                 own address (e.g., while verifying an address is unused
                 during address autoconfiguration [ADDRCONF]).  The
                 unspecified address has a value of 0:0:0:0:0:0:0:0.

不特定のアドレス--アドレス(例えば、アドレスは未知である)の不足を示す予約されたアドレス値。 それは、送付先アドレスとして決して使用されませんが、送付者が(まだ)それ自身のアドレスを知っていないなら(例えば、アドレスについて確かめるのはアドレス自動構成[ADDRCONF]の間未使用ですが)、ソースアドレスとして使用されるかもしれません。 不特定のアドレスには値がある、0:0:、0:0:0、:、0:0:0

2.4.  Requirements

2.4. 要件

   Throughout this document, the words that are used to define the
   significance of the particular requirements are capitalized.  These
   words are:

このドキュメント中では、特定の要件の意味を定義するのに使用される単語は大文字で書かれます。 これらの単語は以下の通りです。

   MUST
        This word or the adjective "REQUIRED" means that the item is an
        absolute requirement of this specification.

「必要である」というThis単語か形容詞が、項目がこの仕様に関する絶対条件であることを意味しなければなりません。

   MUST NOT
        This phrase means the item is an absolute prohibition of this
        specification.

Thisは手段を言葉で表してはいけません。項目はこの仕様の絶対禁止です。

   SHOULD
        This word or the adjective "RECOMMENDED" means that there may
        exist valid reasons in particular circumstances to ignore this
        item, but the full implications should be understood and the
        case carefully weighed before choosing a different course.

SHOULD This単語か形容詞がこの項目を無視する特定の事情の正当な理由を存在するかもしれない手段に「推薦しました」が、完全な含意は、理解されていて異なったコースを選ぶ前に慎重に熟慮されたケースであるべきです。

   SHOULD NOT
        This phrase means that there may exist valid reasons in
        particular circumstances when the listed behavior is acceptable
        or even useful, but the full implications should be understood
        and the case carefully weighted before implementing any behavior

どんな振舞いも実装する前にいつ記載された振舞いが許容できるか、または役に立ちさえしますが、完全な含意が理解されるべきであるか、そして、この件が慎重に重みを加えた特定の事情の正当な理由が存在するかもしれないSHOULD NOT This句の手段

Narten, Nordmark & Simpson  Standards Track                     [Page 9]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[9ページ]。

        described with this label.

このラベルで、説明されます。

   MAY  This word or the adjective "OPTIONAL" means that this item is
        truly optional.  One vendor may choose to include the item
        because a particular marketplace requires it or because it
        enhances the product, for example, another vendor may omit the
        same item.

この項目は、This単語か形容詞的「任意」の手段ですが、本当に、任意の状態でそうするかもしれません。 1つのベンダーが、特定の市場がそれを必要とするか、または製品を高めるので項目を含んでいるのを選ぶかもしれません、例えば、別のベンダーは同じ項目を忘れるかもしれません。

   This document also makes use of internal conceptual variables to
   describe protocol behavior and external variables that an
   implementation must allow system administrators to change.  The
   specific variable names, how their values change, and how their
   settings influence protocol behavior are provided to demonstrate
   protocol behavior.  An implementation is not required to have them in
   the exact form described here, so long as its external behavior is
   consistent with that described in this document.

また、このドキュメントは、システム管理者が実装で変えることができなければならないプロトコルの振舞いと外部の変数について説明するのに内部の概念的な変数を利用します。 プロトコルの振舞いを示すために特定の変数名と、それらの値がどう変化するか、そして、彼らの設定影響がどう振舞いについて議定書の中で述べるかを提供します。 実装はここで説明された正確なフォームにそれらを持つのに必要ではありません、外部の振舞いが本書では説明されるそれと一致している限り。

3.  PROTOCOL OVERVIEW

3. プロトコル概要

   This protocol solves a set of problems related to the interaction
   between nodes attached to the same link.  It defines mechanisms for
   solving each of the following problems:

このプロトコルは同じリンクに添付されたノードの間の相互作用に関連する1セットの問題を解決します。 それはそれぞれの以下の問題を解決するためにメカニズムを定義します:

    Router Discovery: How hosts locate routers that reside on an
               attached link.

ルータ発見: ホストはどう付属リンクの上にあるルータの場所を見つけるか。

    Prefix Discovery: How hosts discover the set of address prefixes
               that define which destinations are on-link for an
               attached link.  (Nodes use prefixes to distinguish
               destinations that reside on-link from those only
               reachable through a router.)

発見を前に置いてください: ホストはどう目的地がリンクのどれであるかを付属リンクと定義するアドレス接頭語のセットを発見するか。 (ノードは届くだけであるそれらからルータまでオンリンクで住んでいる目的地を区別するのに接頭語を使用します。)

    Parameter Discovery: How a node learns such link parameters as the
               link MTU or such Internet parameters as the hop limit
               value to place in outgoing packets.

パラメタ発見: ノードは、出発しているパケットで入賞するためにどうリンクMTUのようなリンクパラメータかホップ制限値のようなインターネットパラメタを学ぶか。

    Address Autoconfiguration: How nodes automatically configure an
               address for an interface.

自動構成を扱ってください: ノードはどう自動的にインタフェースへのアドレスを構成するか。

    Address resolution: How nodes determine the link-layer address of an
               on-link destination (e.g., a neighbor) given only the
               destination's IP address.

解決を扱ってください: 目的地のIPアドレスだけを考えて、ノードはどうリンクの上の目的地(例えば、隣人)のリンクレイヤアドレスを決定するか。

    Next-hop determination: The algorithm for mapping an IP destination
               address into the IP address of the neighbor to which
               traffic for the destination should be sent.  The next-hop
               can be a router or the destination itself.

次のホップ決断: 目的地のために隣人のIPアドレスへの受信者IPアドレスをどのトラフィックに写像するかためのアルゴリズムを送るべきです。 次のホップは、ルータか目的地自体であるかもしれません。

Narten, Nordmark & Simpson  Standards Track                    [Page 10]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[10ページ]。

    Neighbor Unreachability Detection: How nodes determine that a
               neighbor is no longer reachable.  For neighbors used as
               routers, alternate default routers can be tried.  For
               both routers and hosts, address resolution can be
               performed again.

隣人Unreachability検出: ノードは、隣人にもう届いていないことをどう決定するか。 ルータとして使用される隣人のために、代替のデフォルトルータを試みることができます。 ルータとホストの両方に関しては、再びアドレス解決を実行できます。

    Duplicate Address Detection: How a node determines that an address
               it wishes to use is not already in use by another node.

アドレス検出をコピーしてください: ノードは、それが使用したがっているアドレスが別のノードで既に使用中でないことをどう決定するか。

    Redirect:  How a router informs a host of a better first-hop node to
               reach a particular destination.

向け直します: ルータは、特定の目的地に達するように、より良い最初に、ホップノードについてどうホストに知らせるか。

   Neighbor Discovery defines five different ICMP packet types: A pair
   of Router Solicitation and Router Advertisement messages, a pair of
   Neighbor Solicitation and Neighbor Advertisements messages, and a
   Redirect message.  The messages serve the following purpose:

隣人ディスカバリーは5つの異なったICMPパケットタイプを定義します: 1組のRouter SolicitationとRouter Advertisementメッセージ(Neighbor Solicitation、Neighbor Advertisementsメッセージ、およびRedirectメッセージの1組)。 メッセージは以下の目的に役立ちます:

    Router Solicitation: When an interface becomes enabled, hosts may
               send out Router Solicitations that request routers to
               generate Router Advertisements immediately rather than at
               their next scheduled time.

ルータ懇願: インタフェースが可能にされるようになると、ホストは彼らの次の予定されている時間よりすぐにむしろRouter Advertisementsを生成するためにルータを要求するRouter Solicitationsを出すかもしれません。

    Router Advertisement: Routers advertise their presence together with
               various link and Internet parameters either periodically,
               or in response to a Router Solicitation message.  Router
               Advertisements contain prefixes that are used for on-link
               determination and/or address configuration, a suggested
               hop limit value, etc.

ルータ通知: ルータは様々なリンクとインターネットパラメタと共に定期的、またはRouter Solicitationメッセージに対応してそれらの存在の広告を出します。 ルータAdvertisementsはリンクにおける決断、そして/または、アドレス構成に使用される接頭語、提案されたホップ制限値などを含んでいます。

    Neighbor Solicitation: Sent by a node to determine the link-layer
               address of a neighbor, or to verify that a neighbor is
               still reachable via a cached link-layer address.
               Neighbor Solicitations are also used for Duplicate
               Address Detection.

隣人懇願: ノードで送って、隣人のリンクレイヤアドレスを決定するか、または隣人がキャッシュされたリンクレイヤアドレスでまだ届いていることを確かめます。 また、隣人SolicitationsはDuplicate Address Detectionに使用されます。

    Neighbor Advertisement: A response to a Neighbor Solicitation
               message.  A node may also send unsolicited Neighbor
               Advertisements to announce a link-layer address change.

隣人広告: Neighbor Solicitationメッセージへの応答。 また、ノードは、リンクレイヤアドレス変更を発表するために求められていないNeighbor Advertisementsを送るかもしれません。

    Redirect:  Used by routers to inform hosts of a better first hop for
               a destination.

向け直します: ルータによって使用されて、目的地のために、より良い最初のホップについてホストに知らせます。

   On multicast-capable links, each router periodically multicasts a
   Router Advertisement packet announcing its availability.  A host
   receives Router Advertisements from all routers, building a list of
   default routers.  Routers generate Router Advertisements frequently
   enough that hosts will learn of their presence within a few minutes,
   but not frequently enough to rely on an absence of advertisements to

マルチキャストできるリンク、各ルータ、定期的である、有用性を発表するマルチキャストa Router Advertisementパケット。 デフォルトルータのリストを造って、ホストはすべてのルータからRouter Advertisementsを受け取ります。 ルータはホストが頻繁に広告の欠如を当てにしないことができるくらいの数分以内に彼らの存在を知るくらいの頻繁にRouter Advertisementsを生成します。

Narten, Nordmark & Simpson  Standards Track                    [Page 11]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[11ページ]。

   detect router failure; a separate Neighbor Unreachability Detection
   algorithm provides failure detection.

ルータ失敗を検出してください。 別々のNeighbor Unreachability Detectionアルゴリズムは失敗検出を提供します。

   Router Advertisements contain a list of prefixes used for on-link
   determination and/or autonomous address configuration; flags
   associated with the prefixes specify the intended uses of a
   particular prefix.  Hosts use the advertised on-link prefixes to
   build and maintain a list that is used in deciding when a packet's
   destination is on-link or beyond a router.  Note that a destination
   can be on-link even though it is not covered by any advertised on-
   link prefix.  In such cases a router can send a Redirect informing
   the sender that the destination is a neighbor.

ルータAdvertisementsはリンクにおける決断、そして/または、自治のアドレス構成に使用される接頭語のリストを含んでいます。 接頭語に関連している旗は特定の接頭語の意図している用途を指定します。 ホストは、パケットの目的地がいつリンクかルータを超えているかを決める際に使用されるリストを造って、維持するのにリンクの上の広告を出している接頭語を使用します。 それがいずれでも広告を出した状態でカバーされていませんが、目的地がリンクであることができることに注意してください、オンである、リンク接頭語。 そのような場合ルータで、Redirectは、目的地が隣人であることを送付者に知らせることができます。

   Router Advertisements (and per-prefix flags) allow routers to inform
   hosts how to perform Address Autoconfiguration.  For example, routers
   can specify whether hosts should use stateful (DHCPv6) and/or
   autonomous (stateless) address configuration.  The exact semantics
   and usage of the address configuration-related information is
   specified in [ADDRCONF].

ルータAdvertisements(そして、1接頭語あたりの旗)はAddress Autoconfigurationを実行する方法をホストにルータを知らせさせます。 例えば、ルータは、ホストがstateful(DHCPv6)な、そして/または、自治(状態がない)のアドレス構成を使用するべきであるかどうか指定できます。 構成関連の情報が指定されるアドレス[ADDRCONF]の正確な意味論と用法。

   Router Advertisement messages also contain Internet parameters such
   as the hop limit that hosts should use in outgoing packets and,
   optionally, link parameters such as the link MTU.  This facilitates
   centralized administration of critical parameters that can be set on
   routers and automatically propagated to all attached hosts.

ルータAdvertisementメッセージは、また、ホストが出発しているパケットで使用するべきであるホップ限界などのインターネットパラメタを含んでいて、任意にリンクMTUなどのパラメタをリンクします。 これはルータに設定して、自動的にすべての付属ホストに伝播できる臨界パラメータの集権的管理を容易にします。

   Nodes accomplish address resolution by multicasting a Neighbor
   Solicitation that asks the target node to return its link-layer
   address.  Neighbor Solicitation messages are multicast to the
   solicited-node multicast address of the target address.  The target
   returns its link-layer address in a unicast Neighbor Advertisement
   message.  A single request-response pair of packets is sufficient for
   both the initiator and the target to resolve each other's link-layer
   addresses; the initiator includes its link-layer address in the
   Neighbor Solicitation.

ノードはリンクレイヤアドレスを返すように目標ノードに頼むマルチキャスティングa Neighbor Solicitationによるアドレス解決を実行します。 隣人Solicitationメッセージはあて先アドレスの請求されたノードマルチキャストアドレスへのマルチキャストです。 目標はユニキャストNeighbor Advertisementメッセージのリンクレイヤアドレスを返します。 創始者と目標の両方が互いのリンクレイヤアドレスを決議するためにパケットの1要求応答組は十分です。 創始者はNeighbor Solicitationのリンクレイヤアドレスを入れます。

   Neighbor Solicitation messages can also be used to determine if more
   than one node has been assigned the same unicast address.  The use of
   Neighbor Solicitation messages for Duplicate Address Detection is
   specified in [ADDRCONF].

また、同じユニキャストアドレスを1つ以上のノードに割り当ててあるかどうか決定するのに隣人Solicitationメッセージを使用できます。 Neighbor SolicitationメッセージのDuplicate Address Detectionの使用は[ADDRCONF]で指定されます。

   Neighbor Unreachability Detection detects the failure of a neighbor
   or the failure of the forward path to the neighbor.  Doing so
   requires positive confirmation that packets sent to a neighbor are
   actually reaching that neighbor and being processed properly by its
   IP layer.  Neighbor Unreachability Detection uses confirmation from
   two sources.  When possible, upper-layer protocols provide a positive
   confirmation that a connection is making "forward progress", that is,

隣人Unreachability Detectionは隣人の失敗かフォワードパスの失敗を隣人に検出します。 そうするのはパケットが実際にその隣人に届いていて、IP層によって適切に処理される隣人に送った積極的確認を必要とします。 隣人Unreachability Detectionは2つのソースから確認を使用します。 可能で、上側の層のプロトコルが「前進の進歩」を接続がしている積極的確認に提供すると、それは提供します。

Narten, Nordmark & Simpson  Standards Track                    [Page 12]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[12ページ]。

   previously sent data is known to have been delivered correctly (e.g.,
   new acknowledgments were received recently).  When positive
   confirmation is not forthcoming through such "hints", a node sends
   unicast Neighbor Solicitation messages that solicit Neighbor
   Advertisements as reachability confirmation from the next hop.  To
   reduce unnecessary network traffic, probe messages are only sent to
   neighbors to which the node is actively sending packets.

以前送られたデータによって正しく提供されたのが知られています(最近、例えば新しい承認を受けました)。 積極的確認がそのような「ヒント」で用意されていないとき、ノードは可到達性確認として次のホップからNeighbor Advertisementsに請求するユニキャストNeighbor Solicitationメッセージを送ります。 不要なネットワークトラフィックを減少させるために、ノードが活発にパケットを送る隣人に徹底的調査メッセージを送るだけです。

   In addition to addressing the above general problems, Neighbor
   Discovery also handles the following situations:

また、上の一般的問題を扱うことに加えて、Neighborディスカバリーは以下の状況を扱います:

     Link-layer address change - A node that knows its link-layer
          address has changed can multicast a few (unsolicited) Neighbor
          Advertisement packets to all nodes to quickly update cached
          link-layer addresses that have become invalid.  Note that the
          sending of unsolicited advertisements is a performance
          enhancement only (e.g., unreliable).  The Neighbor
          Unreachability Detection algorithm ensures that all nodes will
          reliably discover the new address, though the delay may be
          somewhat longer.

アドレス変化をリンクで層にしてください--リンクレイヤアドレスを知っているノードは缶のマルチキャストを変えました。すぐにアップデートするすべてのノードへのいくつかの(求められていません)の隣人Advertisementパケットが無効になったリンクレイヤアドレスをキャッシュしました。 未承諾広告の発信がパフォーマンス強化専用であることに注意してください、(例えば、頼り無さ、) Neighbor Unreachability Detectionアルゴリズムは、すべてのノードが新しいアドレスを確かに発見するのを確実にします、遅れがいくらか長いかもしれませんが。

     Inbound load balancing - Nodes with replicated interfaces may want
          to load balance the reception of incoming packets across
          multiple network interfaces on the same link.  Such nodes have
          multiple link-layer addresses assigned to the same interface.
          For example, a single network driver could represent multiple
          network interface cards as a single logical interface having
          multiple link-layer addresses.  Load balancing is handled by
          allowing routers to omit the source link-layer address from
          Router Advertisement packets, thereby forcing neighbors to use
          Neighbor Solicitation messages to learn link-layer addresses
          of routers.  Returned Neighbor Advertisement messages can then
          contain link-layer addresses that differ depending on who
          issued the solicitation.

本国行きのロードバランシング--模写されたインタフェースがあるノードは同じリンクの上の複数のネットワーク・インターフェースの向こう側に入って来るパケットのレセプションを負荷バランスに必要とするかもしれません。 そのようなノードで、複数のリンクレイヤアドレスを同じインタフェースに割り当てます。 例えば、独身のネットワークドライバーは複数のリンクレイヤアドレスを持っている単一の論理的なインタフェースとして複数のネットワーク・インターフェース・カードを表すことができました。 ルータがRouter Advertisementパケットからのソースリンクレイヤアドレスを省略するのを許容することによって、ロードバランシングは扱われます、その結果、隣人にルータのリンクレイヤアドレスを学ぶNeighbor Solicitationメッセージを使用させます。 そして、返されたNeighbor Advertisementメッセージはだれが懇願を発行したかによって、異なるリンクレイヤアドレスを含むことができます。

     Anycast addresses - Anycast addresses identify one of a set of
          nodes providing an equivalent service, and multiple nodes on
          the same link may be configured to recognize the same Anycast
          address.  Neighbor Discovery handles anycasts by having nodes
          expect to receive multiple Neighbor Advertisements for the
          same target.  All advertisements for anycast addresses are
          tagged as being non-Override advertisements.  This invokes
          specific rules to determine which of potentially multiple
          advertisements should be used.

Anycastアドレス--Anycastアドレスは同等なサービスを備える1セットのノードの1つを特定して、同じリンクの上の複数のノードが、同じAnycastアドレスを認識するために構成されるかもしれません。 ノードを持っているのによる隣人ディスカバリーハンドルanycastsは、同じ目標のために複数のNeighbor Advertisementsを受け取ると予想します。 anycastアドレスのためのすべての広告が非オーバーライド広告であるとしてタグ付けをされます。 これは、潜在的に複数の広告のどれが使用されるべきであるかを決定するために特定の規則を呼び出します。

     Proxy advertisements - A router willing to accept packets on behalf
          of a target address that is unable to respond to Neighbor
          Solicitations can issue non-Override Neighbor Advertisements.

プロキシ広告--Neighbor Solicitationsに応じることができないあて先アドレスを代表してパケットを受け入れても構わないと思っているルータは非オーバーライドNeighbor Advertisementsを発行できます。

Narten, Nordmark & Simpson  Standards Track                    [Page 13]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[13ページ]。

          There is currently no specified use of proxy, but proxy
          advertising could potentially be used to handle cases like
          mobile nodes that have moved off-link.  However, it is not
          intended as a general mechanism to handle nodes that, e.g., do
          not implement this protocol.

現在、プロキシの指定された使用が全くありませんが、オフリンクを動かしたモバイルノードのようなケースを扱うのに潜在的にプロキシ広告を使用できました。 しかしながら、一般的機構としてノードを扱うことを意図しない、それ、例えば、このプロトコルを実装しないでください。

3.1.  Comparison with IPv4

3.1. IPv4との比較

   The IPv6 Neighbor Discovery protocol corresponds to a combination of
   the IPv4 protocols ARP [ARP], ICMP Router Discovery [RDISC], and ICMP
   Redirect [ICMPv4].  In IPv4 there is no generally agreed upon
   protocol or mechanism for Neighbor Unreachability Detection, although
   Hosts Requirements [HR-CL] does specify some possible algorithms for
   Dead Gateway Detection (a subset of the problems Neighbor
   Unreachability Detection tackles).

IPv6 NeighborディスカバリープロトコルはIPv4プロトコルアルプ[アルプ]、ICMP Routerディスカバリー[RDISC]、およびICMP Redirect[ICMPv4]の組み合わせに対応しています。 あるIPv4では、一般に、いいえはNeighbor Unreachability Detectionのためにプロトコルかメカニズムに同意しました、Hosts Requirements[HR-CL]はDeadゲートウェイDetection(問題Neighbor Unreachability Detection道具の部分集合)にいくつかの可能なアルゴリズムを指定しますが。

   The Neighbor Discovery protocol provides a multitude of improvements
   over the IPv4 set of protocols:

NeighborディスカバリープロトコルはプロトコルのIPv4セットの上に改良の多数を供給します:

     Router Discovery is part of the base protocol set; there is no need
     for hosts to "snoop" the routing protocols.

ルータディスカバリーはベースプロトコルセットの一部です。 ホストがルーティング・プロトコルについて「詮索する」必要は全くありません。

     Router advertisements carry link-layer addresses; no additional
     packet exchange is needed to resolve the router's link-layer
     address.

ルータ通知はリンクレイヤアドレスを載せます。 どんな追加パケット交換も、ルータのリンクレイヤアドレスを決議するのに必要ではありません。

     Router advertisements carry prefixes for a link; there is no need
     to have a separate mechanism to configure the "netmask".

ルータ通知は接頭語をリンクに載せます。 「ネットマスク」を構成するために、別々のメカニズムを持つ必要は全くありません。

     Router advertisements enable Address Autoconfiguration.

ルータ通知はAddress Autoconfigurationを有効にします。

     Routers can advertise an MTU for hosts to use on the link, ensuring
     that all nodes use the same MTU value on links lacking a well-
     defined MTU.

ルータはリンクの上に使用するホストのためにMTUの広告を出すことができます、すべてのノードがよく定義されたMTUを欠きながらリンクの上に同じMTU値を使用するのを確実にして。

     Address resolution multicasts are "spread" over 4 billion (2^32)
     multicast addresses greatly reducing address resolution related
     interrupts on nodes other than the target.  Moreover, non-IPv6
     machines should not be interrupted at all.

アドレス解決マルチキャストは目標以外のノードにおけるアドレス解決を大いに抑える40億(2^32)以上マルチキャストが扱う「普及」関連する中断です。 そのうえ、非IPv6マシンを全く中断するべきではありません。

     Redirects contain the link-layer address of the new first hop;
     separate address resolution is not needed upon receiving a
     redirect.

向け直す、新しい最初のホップのリンクレイヤアドレスを含んでください。 aを受けるとき、別々のアドレス解決は再直接で必要ではありません。

     Multiple prefixes can be associated with the same link.  By
     default, hosts learn all on-link prefixes from Router
     Advertisements.  However, routers may be configured to omit some or
     all prefixes from Router Advertisements.  In such cases hosts

複数の接頭語を同じリンクに関連づけることができます。 デフォルトで、ホストはRouter Advertisementsからリンクの上のすべての接頭語を学びます。 しかしながら、ルータは、Router Advertisementsからいくつかかすべての接頭語を省略するために構成されるかもしれません。 そのような場合ホスト

Narten, Nordmark & Simpson  Standards Track                    [Page 14]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[14ページ]。

     assume that destinations are off-link and send traffic to routers.

目的地がオフリンクであり、トラフィックをルータに送ると仮定してください。

     A router can then issue redirects as appropriate.

ルータは問題が適宜向け直すその時がそうすることができます。

     Unlike IPv4, the recipient of an IPv6 redirect assumes that the new
     next-hop is on-link.  In IPv4, a host ignores redirects specifying
     a next-hop that is not on-link according to the link's network
     mask.  The IPv6 redirect mechanism is analogous to the XRedirect
     facility specified in [SH-MEDIA].  It is expected to be useful on
     non-broadcast and shared media links in which it is undesirable or
     not possible for nodes to know all prefixes for on-link
     destinations.

IPv4、IPv6の受取人、再直接、新しい次のホップがリンクであると仮定します。 IPv4、次のホップであることで指定aを向け直すホストが、無視するaでは、リンクのネットワークマスクに従って、それはリンクではありません。 IPv6の再直接のメカニズムは[SH-メディア]で指定されたXRedirect施設に類似しています。 それがノードには、リンクの上の目的地にすべての接頭語を知るのが望ましくないか、または可能でない非放送であって共有されたメディアリンクで役に立つと予想されます。

     Neighbor Unreachability Detection is part of the base significantly
     improving the robustness of packet delivery in the presence of
     failing routers, partially failing or partitioned links and nodes
     that change their link-layer addresses.  For instance, mobile nodes
     can move off-link without losing any connectivity due to stale ARP
     caches.

隣人Unreachability Detectionはそれらのリンクレイヤアドレスを変えるルータに失敗することの面前でパケット配信の丈夫さをかなり改良するベース、部分的に失敗したか、または仕切られたリンク、およびノードの一部です。 例えば、聞き古したARPキャッシュのためどんな接続性も失わないで、モバイルノードはオフリンクを動かすことができます。

     Unlike ARP, Neighbor Discovery detects half-link failures (using
     Neighbor Unreachability Detection) and avoids sending traffic to
     neighbors with which two-way connectivity is absent.

ARPと異なって、Neighborディスカバリーは、半分リンクの故障を検出して(Neighbor Unreachability Detectionを使用します)、両用接続性が欠けている隣人にトラフィックを送るのを避けます。

     Unlike in IPv4 Router Discovery the Router Advertisement messages
     do not contain a preference field.  The preference field is not
     needed to handle routers of different "stability"; the Neighbor
     Unreachability Detection will detect dead routers and switch to a
     working one.

IPv4 RouterディスカバリーのRouter Advertisementと異なって、メッセージは選択領域を含んでいません。 選択領域は異なった「安定性」のルータを扱うのに必要ではありません。 Neighbor Unreachability Detectionは死んでいるルータを検出して、働くものに切り替わるでしょう。

     The use of link-local addresses to uniquely identify routers (for
     Router Advertisement and Redirect messages) makes it possible for
     hosts to maintain the router associations in the event of the site
     renumbering to use new global prefixes.

唯一、ルータ(Router AdvertisementとRedirectメッセージのための)を特定するリンクローカルのアドレスの使用で、サイトが新しいグローバルな接頭語に使用に番号を付け替えさせる場合ホストがルータ協会を維持するのが可能になります。

     Using the Hop Limit equal to 255 trick Neighbor Discovery is immune
     to off-link senders that accidentally or intentionally send ND
     messages.  In IPv4 off-link senders can send both ICMP Redirects
     and Router Advertisement messages.

255トリックと等しいHop Limitを使用して、偶然か故意にノースダコタメッセージを送るオフリンク送付者にとって、Neighborディスカバリーは免疫です。 IPv4オフリンクでは、送付者はICMP RedirectsとRouter Advertisementの両方にメッセージを送ることができます。

     Placing address resolution at the ICMP layer makes the protocol
     more media-independent than ARP and makes it possible to use
     standard IP authentication and security mechanisms as appropriate
     [IPv6-AUTH, IPv6-ESP].

ICMP層にアドレス解決をみなすのに、プロトコルをARPよりメディアから独立するようにして、適宜[IPv6-AUTH、IPv6-超能力]標準のIP認証とセキュリティー対策を使用するのは可能になります。

Narten, Nordmark & Simpson  Standards Track                    [Page 15]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[15ページ]。

3.2.  Supported Link Types

3.2. リンク型であるとサポートされます。

   Neighbor Discovery supports links with different properties.  In the
   presence of certain properties only a subset of the ND protocol
   mechanisms are fully specified in this document:

隣人ディスカバリーは異なった特性とのリンクを支えます。 ある特性だけがあるとき、ノースダコタプロトコルメカニズムの部分集合は本書では完全に指定されています:

   point-to-point - Neighbor Discovery handles such links just like
                    multicast links.  (Multicast can be trivially
                    provided on point to point links, and interfaces can
                    be assigned link-local addresses.)  Neighbor
                    Discovery should be implemented as described in this
                    document.

ポイントツーポイント--隣人ディスカバリーはまさしくマルチキャストリンクのようなリンクを扱います。 (リンクを指すためにポイントの上でマルチキャストを些細なことに提供できて、リンクローカルのアドレスをインタフェースに割り当てることができます。) 隣人ディスカバリーは本書では説明されるように実装されるべきです。

   multicast      - Neighbor Discovery should be implemented as
                    described in this document.

マルチキャスト--隣人ディスカバリーは本書では説明されるように実装されるべきです。

   non-broadcast multiple access (NBMA)
                  - Redirect, Neighbor Unreachability Detection and
                    next-hop determination should be implemented as
                    described in this document.  Address resolution, and
                    the mechanism for delivering Router Solicitations
                    and Advertisements on NBMA links is not specified in
                    this document.  Note that if hosts support manual
                    configuration of a list of default routers, hosts
                    can dynamically acquire the link-layer addresses for
                    their neighbors from Redirect messages.

複数の非放送アクセス(NBMA)--再直接のNeighbor Unreachability Detectionと次のホップ決断は本書では説明されるように実装されるべきです。 解決を扱ってください。そうすれば、NBMAリンクの上にRouter SolicitationsとAdvertisementsを提供するためのメカニズムは本書では指定されません。 ホストがデフォルトルータのリストの手動の構成をサポートするなら、ホストが彼らの隣人のためにRedirectメッセージからリンクレイヤアドレスをダイナミックに習得できることに注意してください。

   shared media   - The Redirect message is modeled after the XRedirect
                    message in [SH-MEDIA] in order to simplify use of
                    the protocol on shared media links.

共有されたメディア--Redirectメッセージは、共有されたメディアリンクにおけるプロトコルの使用を簡素化するために[SH-メディア]によるXRedirectメッセージに倣われます。

                    This specification does not address shared media
                    issues that only relate to routers, such as:

この仕様は、共有されたメディアがルータに関連するだけである以下などの問題であると扱いません。

                     - How routers exchange reachability information on
                       a shared media link.

- ルータはどう共有されたメディアリンクの可到達性情報を交換するか。

                     - How a router determines the link-layer address of
                       a host, which it needs to send redirect messages
                       to the host.

- ルータはどうホストのリンクレイヤアドレスを決定するか。(それはそのホストが再直接のメッセージをホストに送る必要があります)。

                     - How a router determines that it is the first-hop
                       router for a received packet.

- ルータは、それが容認されたパケットのための最初に、ホップルータであることをどう決定するか。

                    The protocol is extensible (through the definition
                    of new options) so that other solutions might be
                    possible in the future.

プロトコルは、他のソリューションが将来可能であることができなるように広げることができます(新しいオプションの定義による)。

Narten, Nordmark & Simpson  Standards Track                    [Page 16]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[16ページ]。

   variable MTU   - Neighbor Discovery allows routers to specify a MTU
                    for the link, which all nodes then use.  All nodes
                    on a link must use the same MTU (or Maximum Receive
                    Unit) in order for multicast to work properly.
                    Otherwise when multicasting a sender, which can not
                    know which nodes will receive the packet, could not
                    determine a minimum packet size all receivers can
                    process.

可変MTU--ルータは隣人ディスカバリーでリンクにMTUを指定できます。(次に、すべてのノードがそれを使用します)。 マルチキャストが適切に扱うのに、リンクの上のすべてのノードが同じMTU(または、Maximum Receive Unit)を使用しなければなりません。 マルチキャスティングであるときに、さもなければ、送付者(どのノードがパケットを受けるかを知ることができない)は、すべての受信機が処理されることができると最小のパケットサイズに決心できませんでした。

   asymmetric reachability
                  - Neighbor Discovery detects the absence of symmetric
                    reachability; a node avoids paths to a neighbor with
                    which it does not have symmetric connectivity.

非対称の可到達性--隣人ディスカバリーは左右対称の可到達性の欠如を検出します。 ノードはそれが左右対称の接続性を持っていない隣人として経路を避けます。

                    The Neighbor Unreachability Detection will typically
                    identify such half-links and the node will refrain
                    from using them.

Neighbor Unreachability Detectionはそのような半分リンクを通常特定するでしょう、そして、ノードはそれらを使用するのを控えるでしょう。

                    The protocol can presumably be extended in the
                    future to find viable paths in environments that
                    lack reflexive and transitive connectivity.

おそらく、将来、環境における実行可能な経路がその不足反動的と遷移的な接続性であることがわかるためにプロトコルを広げることができます。

4.  MESSAGE FORMATS

4. メッセージ・フォーマット

4.1.  Router Solicitation Message Format

4.1. ルータ懇願メッセージ・フォーマット

   Hosts send Router Solicitations in order to prompt routers to
   generate Router Advertisements quickly.

ホストは、ルータがすぐにRouter Advertisementsを生成するようにうながすためにRouter Solicitationsを送ります。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                            Reserved                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Options ...
     +-+-+-+-+-+-+-+-+-+-+-+-

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| コード| チェックサム| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | オプション… +-+-+-+-+-+-+-+-+-+-+-+-

IP Fields:

IP分野:

   Source Address
                  An IP address assigned to the sending interface, or
                  the unspecified address if no address is assigned to
                  the sending interface.

アドレスが全く送付インタフェースに割り当てられないならIPアドレスが送付インタフェース、または不特定のアドレスに割り当てたソースAddress An。

   Destination Address
                  Typically the all-routers multicast address.

オールルータマルチキャストが扱う目的地Address Typically。

Narten, Nordmark & Simpson  Standards Track                    [Page 17]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[17ページ]。

   Hop Limit      255

ホップ限界255

   Priority       15

優先権15

   Authentication Header
                  If a Security Association for the IP Authentication
                  Header exists between the sender and the destination
                  address, then the sender SHOULD include this header.

IP Authentication Headerのための認証Header If a Security Associationは送付者と送付先アドレスの間に存在していて、次に、送付者SHOULDはこのヘッダーを含んでいます。

ICMP Fields:

ICMP分野:

   Type           133

133をタイプしてください。

   Code           0

コード0

   Checksum       The ICMP checksum.  See [ICMPv6].

チェックサム、ICMPチェックサム。 [ICMPv6]を見てください。

   Reserved       This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約されたThis分野は未使用です。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

Valid Options:

妥当な選択肢:

   Source link-layer address
                  The link-layer address of the sender, if known.

知られているなら、ソースリンクレイヤは、リンクレイヤが送信者のアドレスであると扱います。

   Future versions of this protocol may define new option types.
   Receivers MUST silently ignore any options they do not recognize and
   continue processing the message.

このプロトコルの将来のバージョンは新しいオプションタイプを定義するかもしれません。 受信機は、静かに彼らが認識しない少しのオプションも無視して、メッセージを処理し続けなければなりません。

4.2.  Router Advertisement Message Format

4.2. ルータ通知メッセージ・フォーマット

   Routers send out Router Advertisement message periodically, or in
   response to a Router Solicitation.

ルータは定期的、またはRouter Solicitationに対応してRouter Advertisementメッセージを出します。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     | Cur Hop Limit |M|O|  Reserved |       Router Lifetime         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Reachable Time                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Retrans Timer                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Options ...
     +-+-+-+-+-+-+-+-+-+-+-+-

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| コード| チェックサム| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 野良犬ホップ限界|M|O| 予約されます。| ルータ生涯| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 届いている時間| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Retransタイマ| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | オプション… +-+-+-+-+-+-+-+-+-+-+-+-

Narten, Nordmark & Simpson  Standards Track                    [Page 18]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[18ページ]。

IP Fields:

IP分野:

   Source Address
                  MUST be the link-local address assigned to the
                  interface from which this message is sent.

ソースAddressはこのメッセージが送られるインタフェースに割り当てられたリンクローカルアドレスであるに違いありません。

   Destination Address
                  Typically the Source Address of an invoking Router
                  Solicitation or the all-nodes multicast address.

呼び出しRouter Solicitationの目的地Address Typically Source Addressかオールノードマルチキャストアドレス。

   Hop Limit      255

ホップ限界255

   Priority       15

優先権15

   Authentication Header
                  If a Security Association for the IP Authentication
                  Header exists between the sender and the destination
                  address, then the sender SHOULD include this header.

IP Authentication Headerのための認証Header If a Security Associationは送付者と送付先アドレスの間に存在していて、次に、送付者SHOULDはこのヘッダーを含んでいます。

ICMP Fields:

ICMP分野:

   Type           134

134をタイプしてください。

   Code           0

コード0

   Checksum       The ICMP checksum.  See [ICMPv6].

チェックサム、ICMPチェックサム。 [ICMPv6]を見てください。

   Cur Hop Limit  8-bit unsigned integer.  The default value that should
                  be placed in the Hop Count field of the IP header for
                  outgoing IP packets.  A value of zero means
                  unspecified (by this router).

野良犬Hop Limit、8ビットの符号のない整数。 出発しているIPパケットのためにIPヘッダーのHop Count分野に置かれるべきであるデフォルト値。 ゼロの値は不特定であることを(このルータによる)意味します。

   M              1-bit "Managed address configuration" flag.  When set,
                  hosts use the administered (stateful) protocol for
                  address autoconfiguration in addition to any addresses
                  autoconfigured using stateless address
                  autoconfiguration.  The use of this flag is described
                  in [ADDRCONF].

1ビットの「管理されたアドレス構成」が旗を揚げさせるM。 設定されると、ホストはアドレス自動構成に状態がないアドレス自動構成を使用することで自動構成されたどんなアドレスに加えて管理された(stateful)プロトコルを使用します。 この旗の使用は[ADDRCONF]で説明されます。

   O              1-bit "Other stateful configuration" flag.  When set,
                  hosts use the administered (stateful) protocol for
                  autoconfiguration of other (non-address) information.
                  The use of this flag is described in [ADDRCONF].

○ 1ビットの「他のstateful構成」旗。 設定されると、ホストは他の(非アドレス)情報の自動構成に管理された(stateful)プロトコルを使用します。 この旗の使用は[ADDRCONF]で説明されます。

   Reserved       A 6-bit unused field.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約されたA6ビットの未使用の分野。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 19]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[19ページ]。

   Router Lifetime
                  16-bit unsigned integer.  The lifetime associated with
                  the default router in units of seconds.  The maximum
                  value corresponds to 18.2 hours.  A Lifetime of 0
                  indicates that the router is not a default router and
                  SHOULD NOT appear on the default router list.  The
                  Router Lifetime applies only to the router's
                  usefulness as a default router; it does not apply to
                  information contained in other message fields or
                  options.  Options that need time limits for their
                  information include their own lifetime fields.

ルータLifetime、16ビットの符号のない整数。 ユニットの秒でデフォルトルータに関連している生涯。 最大値は18.2時間に対応しています。 0のLifetimeは、ルータがデフォルトルータでなく、SHOULD NOTがデフォルトルータリストに現れるのを示します。 Router Lifetimeはデフォルトルータとしてルータの有用性だけに適用します。 それは他のメッセージ分野かオプションに含まれた情報に適用されません。 それらの情報にタイムリミットを必要とするオプションがそれら自身の生涯分野を含んでいます。

   Reachable Time 32-bit unsigned integer.  The time, in milliseconds,
                  that a node assumes a neighbor is reachable after
                  having received a reachability confirmation.  Used by
                  the Neighbor Unreachability Detection algorithm (see
                  Section 7.3).  A value of zero means unspecified (by
                  this router).

届いているTime、32ビットの符号のない整数。 可到達性確認を受け取った後に、ノードが隣人であると仮定するミリセカンドで表現される時間は届いています。 Neighbor Unreachability Detectionアルゴリズム(セクション7.3を見る)で、使用されます。 ゼロの値は不特定であることを(このルータによる)意味します。

   Retrans Timer  32-bit unsigned integer.  The time, in milliseconds,
                  between retransmitted Neighbor Solicitation messages.
                  Used by address resolution and the Neighbor
                  Unreachability Detection algorithm (see Sections 7.2
                  and 7.3).  A value of zero means unspecified (by this
                  router).

Retrans Timer、32ビットの符号のない整数。 再送されたNeighbor Solicitationメッセージの間のミリセカンドで表現される時間。 アドレス解決とNeighbor Unreachability Detectionアルゴリズム(セクション7.2と7.3を見る)で、使用されます。 ゼロの値は不特定であることを(このルータによる)意味します。

Possible options:

可能なオプション:

   Source link-layer address
                  The link-layer address of the interface from which the
                  Router Advertisement is sent.  Only used on link
                  layers that have addresses.  A router MAY omit this
                  option in order to enable inbound load sharing across
                  multiple link-layer addresses.

ソースリンクレイヤは、リンクレイヤがRouter Advertisementが送られるインタフェースのアドレスであると扱います。 単にアドレスを持っているリンクレイヤでは、使用されています。 ルータは、複数のリンクレイヤアドレスの向こう側に本国行きの負荷分割法を可能にするためにこのオプションを省略するかもしれません。

   MTU            SHOULD be sent on links that have a variable MTU (as
                  specified in the document that describes how to run IP
                  over the particular link type).  MAY be sent on other
                  links.

MTU SHOULD、可変MTUを持っているリンクに送ってください(特定のリンク型でIPを経営している方法を説明するドキュメントで指定されるように)。 他のリンクに送るかもしれません。

   Prefix Information
                  These options specify the prefixes that are on-link
                  and/or are used for address autoconfiguration.  A
                  router SHOULD include all its on-link prefixes (except
                  the link-local prefix) so that multihomed hosts have
                  complete prefix information about on-link destinations
                  for the links to which they attach.  If complete
                  information is lacking, a multihomed host may not be

接頭語情報Theseオプションは、リンクである接頭語を指定する、そして/または、アドレス自動構成に使用されます。 ルータSHOULDがリンクの上のすべての接頭語(リンクローカルの接頭語を除いた)を含んでいるので、「マルチ-家へ帰」っているホストには、それらが付くリンクへのリンクの上の目的地の完全な接頭語情報があります。 完全な情報が欠けているなら、「マルチ-家へ帰」っているホストは欠けていません。

Narten, Nordmark & Simpson  Standards Track                    [Page 20]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[20ページ]。

                  able to chose the correct outgoing interface when
                  sending traffic to its neighbors.

できる、トラフィックを隣人に送るとき、正しい外向的なインタフェースを選びました。

   Future versions of this protocol may define new option types.
   Receivers MUST silently ignore any options they do not recognize and
   continue processing the message.

このプロトコルの将来のバージョンは新しいオプションタイプを定義するかもしれません。 受信機は、静かに彼らが認識しない少しのオプションも無視して、メッセージを処理し続けなければなりません。

4.3.  Neighbor Solicitation Message Format

4.3. 隣人懇願メッセージ・フォーマット

   Nodes send Neighbor Solicitations to request the link-layer address
   of a target node while also providing their own link-layer address to
   the target.  Neighbor Solicitations are multicast when the node needs
   to resolve an address and unicast when the node seeks to verify the
   reachability of a neighbor.

ノードは、また、それら自身のリンクレイヤアドレスを目標に供給している間、目標ノードのリンクレイヤアドレスを要求するためにNeighbor Solicitationsを送ります。 ノードが、ノードが隣人の可到達性について確かめようとするとき、アドレスとユニキャストを決議する必要があるとき、隣人Solicitationsはマルチキャストです。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                                                               +
     |                                                               |
     +                       Target Address                          +
     |                                                               |
     +                                                               +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Options ...
     +-+-+-+-+-+-+-+-+-+-+-+-

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| コード| チェックサム| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + あて先アドレス+| | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | オプション… +-+-+-+-+-+-+-+-+-+-+-+-

IP Fields:

IP分野:

   Source Address
                  Either an address assigned to the interface from which
                  this message is sent or (if Duplicate Address
                  Detection is in progress [ADDRCONF]) the unspecified
                  address.

アドレスがこのメッセージが送られるインタフェースに割り当てたソースAddress Eitherか(Duplicate Address Detectionが進行しているなら[ADDRCONF])不特定のアドレス。

   Destination Address
                  Either the solicited-node multicast address
                  corresponding to the target address, or the target
                  address.

あて先アドレス、またはあて先アドレスに対応する請求されたノードマルチキャストが扱う目的地Address Either。

   Hop Limit      255

ホップ限界255

Narten, Nordmark & Simpson  Standards Track                    [Page 21]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[21ページ]。

   Priority       15

優先権15

   Authentication Header
                  If a Security Association for the IP Authentication
                  Header exists between the sender and the destination
                  address, then the sender SHOULD include this header.

IP Authentication Headerのための認証Header If a Security Associationは送付者と送付先アドレスの間に存在していて、次に、送付者SHOULDはこのヘッダーを含んでいます。

ICMP Fields:

ICMP分野:

   Type           135

135をタイプしてください。

   Code           0

コード0

   Checksum       The ICMP checksum.  See [ICMPv6].

チェックサム、ICMPチェックサム。 [ICMPv6]を見てください。

   Reserved       This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約されたThis分野は未使用です。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   Target Address
                  The IP address of the target of the solicitation.  It
                  MUST NOT be a multicast address.

IPが扱う懇願の目標のAddressを狙ってください。 それはマルチキャストアドレスであるはずがありません。

Possible options:

可能なオプション:

   Source link-layer address
                  The link-layer address for the sender.  On link layers
                  that have addresses this option MUST be included in
                  multicast solicitations and SHOULD be included in
                  unicast solicitations.

ソースリンクレイヤは、送付者のためにリンクレイヤがアドレスであると扱います。 含まれていて、このオプションがそうしなければならないアドレスを持っているリンクレイヤでは、ユニキャスト懇願でマルチキャスト懇願とSHOULDで含められてください。

   Future versions of this protocol may define new option types.
   Receivers MUST silently ignore any options they do not recognize and
   continue processing the message.

このプロトコルの将来のバージョンは新しいオプションタイプを定義するかもしれません。 受信機は、静かに彼らが認識しない少しのオプションも無視して、メッセージを処理し続けなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 22]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[22ページ]。

4.4.  Neighbor Advertisement Message Format

4.4. 隣人広告メッセージ・フォーマット

   A node sends Neighbor Advertisements in response to Neighbor
   Solicitations and sends unsolicited Neighbor Advertisements in order
   to (unreliably) propagate new information quickly.

ノードは、すばやく新情報を(当てにならずに)伝播するためにNeighbor Solicitationsに対応してNeighbor Advertisementsを送って、求められていないNeighbor Advertisementsを送ります。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |R|S|O|                     Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                                                               +
     |                                                               |
     +                       Target Address                          +
     |                                                               |
     +                                                               +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Options ...
     +-+-+-+-+-+-+-+-+-+-+-+-

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| コード| チェックサム| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |R|S|O| 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + あて先アドレス+| | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | オプション… +-+-+-+-+-+-+-+-+-+-+-+-

IP Fields:

IP分野:

   Source Address
                  An address assigned to the interface from which the
                  advertisement is sent.

広告が送られるインタフェースに割り当てられたソースAddress Anアドレス。

   Destination Address
                  For solicited advertisements, the Source Address of an
                  invoking Neighbor Solicitation or, if the
                  solicitation's Source Address is the unspecified
                  address, the all-nodes multicast address.

目的地Address Forは広告を勧誘しました、呼び出しNeighbor Solicitationか懇願のSource Addressが不特定のアドレスであることのオールノードマルチキャストアドレスのSource Address。

                  For unsolicited advertisements typically the all-nodes
                  multicast address.

未承諾広告、通常オールノードマルチキャストアドレス。

   Hop Limit      255

ホップ限界255

   Priority       15

優先権15

   Authentication Header
                  If a Security Association for the IP Authentication
                  Header exists between the sender and the destination
                  address, then the sender SHOULD include this header.

IP Authentication Headerのための認証Header If a Security Associationは送付者と送付先アドレスの間に存在していて、次に、送付者SHOULDはこのヘッダーを含んでいます。

Narten, Nordmark & Simpson  Standards Track                    [Page 23]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[23ページ]。

ICMP Fields:

ICMP分野:

   Type           136

136をタイプしてください。

   Code           0

コード0

   Checksum       The ICMP checksum.  See [ICMPv6].

チェックサム、ICMPチェックサム。 [ICMPv6]を見てください。

   R              Router flag.  When set, the R-bit indicates that the
                  sender is a router.  The R-bit is used by Neighbor
                  Unreachability Detection to detect a router that
                  changes to a host.

Rルータ旗。 設定されると、R-ビットは、送付者がルータであることを示します。 R-ビットは、ホストに変化するルータを検出するのにNeighbor Unreachability Detectionによって使用されます。

   S              Solicited flag.  When set, the S-bit indicates that
                  the advertisement was sent in response to a Neighbor
                  Solicitation from the Destination address.  The S-bit
                  is used as a reachability confirmation for Neighbor
                  Unreachability Detection.  It MUST NOT be set in
                  multicast advertisements or in unsolicited unicast
                  advertisements.

Sは旗に請求しました。 設定されると、S-ビットは、広告がDestinationアドレスからのNeighbor Solicitationに対応して送られたのを示します。 S-ビットはNeighbor Unreachability Detectionに可到達性確認として使用されます。 マルチキャスト広告か求められていないユニキャスト広告にそれを設定してはいけません。

   O              Override flag.  When set, the O-bit indicates that the
                  advertisement should override an existing cache entry
                  and update the cached link-layer address.  When it is
                  not set the advertisement will not update a cached
                  link-layer address though it will update an existing
                  Neighbor Cache entry for which no link-layer address
                  is known.  It SHOULD NOT be set in solicited
                  advertisements for anycast addresses and in solicited
                  proxy advertisements.  It SHOULD be set in other
                  solicited advertisements and in unsolicited
                  advertisements.

○ 旗をくつがえしてください。 設定されると、O-ビットは、広告が既存のキャッシュエントリーをくつがえして、キャッシュされたリンクレイヤアドレスをアップデートするべきであるのを示します。 それが設定されないとき、リンクレイヤアドレスが全く知られていない既存のNeighbor Cacheエントリーをアップデートするでしょうが、広告はキャッシュされたリンクレイヤアドレスをアップデートしないでしょう。 それ、SHOULD NOTはanycastアドレスのための設定中で請求された広告であり、中でプロキシ広告に請求しました。 それ、SHOULD、他の請求された広告と未承諾広告に設定されてください。

   Reserved       29-bit unused field.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約された29ビットの未使用の分野。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   Target Address
                  For solicited advertisements, the Target Address field
                  in the Neighbor Solicitation message that prompted
                  this advertisement.  For an unsolicited advertisement,
                  the address whose link-layer address has changed.  The
                  Target Address MUST NOT be a multicast address.

目標Address Forは広告、この広告をうながしたNeighbor SolicitationメッセージのTarget Address分野に請求しました。 求められていない広告、リンクレイヤアドレスが変化したアドレスのために。 Target Addressはマルチキャストアドレスであるはずがありません。

Narten, Nordmark & Simpson  Standards Track                    [Page 24]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[24ページ]。

Possible options:

可能なオプション:

   Target link-layer address
                  The link-layer address for the target, i.e., the
                  sender of the advertisement.  MUST be included on link
                  layers that have addresses.

目標リンクレイヤは、すなわち、目標、広告の送付者のためにリンクレイヤがアドレスであると扱います。 アドレスを持っているリンクレイヤに含まなければなりません。

   Future versions of this protocol may define new option types.
   Receivers MUST silently ignore any options they do not recognize and
   continue processing the message.

このプロトコルの将来のバージョンは新しいオプションタイプを定義するかもしれません。 受信機は、静かに彼らが認識しない少しのオプションも無視して、メッセージを処理し続けなければなりません。

4.5.  Redirect Message Format

4.5. メッセージ・フォーマットを向け直してください。

   Routers send Redirect packets to inform a host of a better first-hop
   node on the path to a destination.  Hosts can be redirected to a
   better first-hop router but can also be informed by a redirect that
   the destination is in fact a neighbor.  The latter is accomplished by
   setting the ICMP Target Address equal to the ICMP Destination
   Address.

ルータは、目的地への経路の、より良い最初に、ホップノードについてホストに知らせるためにパケットをRedirectに送ります。 ホストにより良い最初に、ホップルータに向け直すことができますが、また、aは再直接で知らすことができます。事実上、目的地は隣人です。 後者は、ICMP Destination Addressと等しいICMP Target Addressを設定することによって、達成されます。

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |     Code      |          Checksum             |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                                                               +
     |                                                               |
     +                       Target Address                          +
     |                                                               |
     +                                                               +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                                                               +
     |                                                               |
     +                     Destination Address                       +
     |                                                               |
     +                                                               +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   Options ...
     +-+-+-+-+-+-+-+-+-+-+-+-

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| コード| チェックサム| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + あて先アドレス+| | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + 送付先アドレス+| | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | オプション… +-+-+-+-+-+-+-+-+-+-+-+-

Narten, Nordmark & Simpson  Standards Track                    [Page 25]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[25ページ]。

IP Fields:

IP分野:

   Source Address
                  MUST be the link-local address assigned to the
                  interface from which this message is sent.

ソースAddressはこのメッセージが送られるインタフェースに割り当てられたリンクローカルアドレスであるに違いありません。

   Destination Address
                  The Source Address of the packet that triggered the
                  redirect.

再直接の引き金となったパケットの目的地Address Source Address。

   Hop Limit      255

ホップ限界255

   Priority       15

優先権15

   Authentication Header
                  If a Security Association for the IP Authentication
                  Header exists between the sender and the destination
                  address, then the sender SHOULD include this header.

IP Authentication Headerのための認証Header If a Security Associationは送付者と送付先アドレスの間に存在していて、次に、送付者SHOULDはこのヘッダーを含んでいます。

ICMP Fields:

ICMP分野:

   Type           137

137をタイプしてください。

   Code           0

コード0

   Checksum       The ICMP checksum.  See [ICMPv6].

チェックサム、ICMPチェックサム。 [ICMPv6]を見てください。

   Reserved       This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約されたThis分野は未使用です。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   Target Address An IP address that is a better first hop to use for
                  the ICMP Destination Address.  When the target is the
                  actual endpoint of communication, i.e., the
                  destination is a neighbor, the Target Address field
                  MUST contain the same value as the ICMP Destination
                  Address field.  Otherwise the target is a better
                  first-hop router and the Target Address MUST be the
                  router's link-local address so that hosts can uniquely
                  identify routers.

ICMP Destination Addressに使用するより良い最初のホップであるAddress An IPアドレスを狙ってください。 目標がコミュニケーションの実際の終点であるときに、すなわち、目的地が隣人である、Target Address分野はICMP Destination Address分野と同じ値を含まなければなりません。 さもなければ、目標は、より良い最初に、ホップルータです、そして、Target Addressは、ホストが唯一ルータを特定できるためのルータのリンクローカルアドレスでなければなりません。

   Destination Address
                  The IP address of the destination which is redirected
                  to the target.

IPが扱う目標に向け直される目的地の目的地Address。

Narten, Nordmark & Simpson  Standards Track                    [Page 26]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[26ページ]。

Possible options:

可能なオプション:

   Target link-layer address
                  The link-layer address for the target.  It SHOULD be
                  included (if known).  Note that on NBMA links, hosts
                  may rely on the presence of the Target Link-Layer
                  Address option in Redirect messages as the means for
                  determining the link-layer addresses of neighbors.  In
                  such cases, the option MUST be included in Redirect
                  messages.

目標リンクレイヤは、リンクレイヤが目標のためのアドレスであると扱います。 それ、SHOULD、含められてください(知られているなら)。 NBMAリンクの上では、ホストが隣人のリンクレイヤアドレスを決定するための手段としてRedirectメッセージでのTarget Link-層のAddressオプションの存在を当てにするかもしれないことに注意してください。 そのような場合、Redirectメッセージにオプションを含まなければなりません。

   Redirected Header
                  As much as possible of the IP packet that triggered
                  the sending of the Redirect without making the
                  redirect packet exceed 576 octets.

再直接のパケットに576の八重奏を超えさせないでRedirectの発信の引き金となったIPパケットで可能な状態でHeader Asを非常に向け直しました。

4.6.  Option Formats

4.6. オプション形式

   Neighbor Discovery messages include zero or more options, some of
   which may appear multiple times in the same message.  All options are
   of the form:

隣人ディスカバリーメッセージはゼロか、より多くのオプションを含んでいます。その或るものは同じメッセージに複数の回現れるかもしれません。 すべてのオプションがフォームのものです:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |              ...              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     ~                              ...                              ~
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fields:

分野:

   Type           8-bit identifier of the type of option.  The options
                  defined in this document are:

オプションのタイプの8ビットの識別子をタイプしてください。 本書では定義されたオプションは以下の通りです。

                        Option Name                             Type

オプション名前タイプ

                     Source Link-Layer Address                    1
                     Target Link-Layer Address                    2
                     Prefix Information                           3
                     Redirected Header                            4
                     MTU                                          5

ソースリンクレイヤアドレス1目標リンクレイヤアドレス2接頭語情報3はヘッダー4MTU5を向け直しました。

   Length         8-bit unsigned integer.  The length of the option in
                  units of 8 octets.  The value 0 is invalid.  Nodes
                  MUST silently discard an ND packet that contains an
                  option with length zero.

長さ、8ビットの符号のない整数。 8つの八重奏のユニットのオプションの長さ。 値0は無効です。 ノードは長さゼロで静かにオプションを含むノースダコタパケットを捨てなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 27]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[27ページ]。

4.6.1.  Source/Target Link-layer Address

4.6.1. 目標ソース/リンクレイヤアドレス

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |    Link-Layer Address ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| リンクレイヤアドレス… +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fields:

分野:

   Type
                  1 for Source Link-layer Address
                  2 for Target Link-layer Address

目標リンクレイヤアドレスのためのソースリンクレイヤアドレス2のために1をタイプしてください。

   Length         The length of the option in units of 8 octets.  For
                  example, the length for IEEE 802 addresses is 1
                  [IPv6-ETHER].

長さ、8つの八重奏のユニットのオプションの長さ。 例えば、IEEE802アドレスのための長さは1[IPv6-ETHER]です。

   Link-Layer Address
                  The variable length link-layer address.

可変長さのリンク層のAddressはアドレスをリンクで層にします。

                  The content and format of this field (including byte
                  and bit ordering) is expected to be specified in
                  specific documents that describe how IPv6 operates
                  over different link layers.  For instance, [IPv6-
                  ETHER].

IPv6が異なったリンクレイヤの上でどう作動するかを説明する特定のドキュメントでこの分野(バイトと噛み付いている注文を含んでいる)の内容と形式が指定されると予想されます。 例えば、[IPv6- ETHER。]

Description
                  The Source Link-Layer Address option contains the
                  link-layer address of the sender of the packet.  It is
                  used in the Neighbor Solicitation, Router
                  Solicitation, and Router Advertisement packets.

Source Link-層のAddressがゆだねる記述はパケットのリンクレイヤ送信者のアドレスを含んでいます。 それはNeighbor Solicitation、Router Solicitation、およびRouter Advertisementパケットで使用されます。

                  The Target Link-Layer Address option contains the
                  link-layer address of the target.  It is used in
                  Neighbor Advertisement and Redirect packets.

Target Link-層のAddressオプションは目標のリンクレイヤアドレスを含んでいます。 それはNeighbor AdvertisementとRedirectパケットで使用されます。

                  These options MUST be silently ignored for other
                  Neighbor Discovery messages.

他のNeighborディスカバリーメッセージのために静かにこれらのオプションを無視しなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 28]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[28ページ]。

4.6.2.  Prefix Information

4.6.2. 接頭語情報

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     | Prefix Length |L|A| Reserved1 |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                         Valid Lifetime                        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Preferred Lifetime                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved2                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     +                                                               +
     |                                                               |
     +                            Prefix                             +
     |                                                               |
     +                                                               +
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| 接頭語の長さ|L|A| Reserved1| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 有効な生涯| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 都合のよい生涯| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved2| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + 接頭語+| | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fields:

分野:

   Type           3

3をタイプしてください。

   Length         4

長さ4

   Prefix Length  8-bit unsigned integer.  The number of leading bits in
                  the Prefix that are valid.  The value ranges from 0 to
                  128.

Lengthを前に置いてください。8ビットの符号のない整数。 有効なPrefixの主なビットの数。 値は0〜128まで及びます。

   L              1-bit on-link flag.  When set, indicates that this
                  prefix can be used for on-link determination.  When
                  not set the advertisement makes no statement about
                  on-link or off-link properties of the prefix.  For
                  instance, the prefix might be used for address
                  configuration with some of the addresses belonging to
                  the prefix being on-link and others being off-link.

リンクの上のL1ビットの旗。 いつが、セットして、リンクにおける決断にこの接頭語を使用できるのを示しますか? 設定されない場合、広告は接頭語のオンリンクかオフリンクの特性に関する声明を全く出しません。 例えば、接頭語に属すアドレスのいくつかがリンクであり、他のものがリンクであるのから接頭語はアドレス構成に使用されるかもしれません。

   A              1-bit autonomous address-configuration flag.  When set
                  indicates that this prefix can be used for autonomous
                  address configuration as specified in [ADDRCONF].

1ビットの自動アドレス構成旗。 セットが、[ADDRCONF]での指定されるとしての自治のアドレス構成にこの接頭語を使用できるのを示すとき。

   Reserved1      6-bit unused field.  It MUST be initialized to zero by
                  the sender and MUST be ignored by the receiver.

Reserved1 6-ビットの未使用の分野。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 29]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[29ページ]。

   Valid Lifetime
                  32-bit unsigned integer.  The length of time in
                  seconds (relative to the time the packet is sent) that
                  the prefix is valid for the purpose of on-link
                  determination.  A value of all one bits (0xffffffff)
                  represents infinity.  The Valid Lifetime is also used
                  by [ADDRCONF].

有効なLifetime、32ビットの符号のない整数。 接頭語がリンクにおける決断の目的のために有効であることの秒(時間に比例して、パケットを送る)の時間の長さ。 すべての1ビット(0xffffffff)の価値は無限を表します。 また、Valid Lifetimeは[ADDRCONF]によって使用されます。

   Preferred Lifetime
                  32-bit unsigned integer.  The length of time in
                  seconds (relative to the time the packet is sent) that
                  addresses generated from the prefix via stateless
                  address autoconfiguration remain preferred [ADDRCONF].
                  A value of all one bits (0xffffffff) represents
                  infinity.  See [ADDRCONF].

Lifetimeが好んだ、32ビットの符号のない整数。 接頭語から状態がないアドレス自動構成で作られたアドレスが残る都合のよい状態で秒(時間に比例して、パケットを送ります)[ADDRCONF]の時間の長さ。 すべての1ビット(0xffffffff)の価値は無限を表します。 [ADDRCONF]を見てください。

   Reserved2      This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

Reserved2 This分野は未使用です。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   Prefix         An IP address or a prefix of an IP address.  The
                  Prefix Length field contains the number of valid
                  leading bits in the prefix.  The bits in the prefix
                  after the prefix length are reserved and MUST be
                  initialized to zero by the sender and ignored by the
                  receiver.  A router SHOULD NOT send a prefix option
                  for the link-local prefix and a host SHOULD ignore
                  such a prefix option.

An IPアドレスかIPアドレスの接頭語を前に置いてください。 Prefix Length分野は接頭語の有効な主なビットの数を含んでいます。 接頭語の長さの後の接頭語のビットを予約されていて、送付者によってゼロに初期化されて、受信機で無視しなければなりません。SHOULD NOTがリンクローカルの接頭語のための接頭語オプションを送るルータとホストSHOULDはそのような接頭語オプションを無視します。

Description
                  The Prefix Information option provide hosts with on-
                  link prefixes and prefixes for Address
                  Autoconfiguration.

Prefix情報オプションがホストを提供する記述、オンである、Address Autoconfigurationのために接頭語と接頭語をリンクしてください。

                  The Prefix Information option appears in Router
                  Advertisement packets and MUST be silently ignored for
                  other messages.

Prefix情報オプションはRouter Advertisementパケットに現れて、他のメッセージのために静かに無視しなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 30]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[30ページ]。

4.6.3.  Redirected Header

4.6.3. 向け直されたヘッダー

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |            Reserved           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                           Reserved                            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     ~                       IP header + data                        ~
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ IPヘッダー+データ~| | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Fields:

分野:

   Type           4

4をタイプしてください。

   Length         The length of the option in units of 8 octets.

長さ、8つの八重奏のユニットのオプションの長さ。

   Reserved       These fields are unused.  They MUST be initialized to
                  zero by the sender and MUST be ignored by the
                  receiver.

予約されたThese分野は未使用です。 それらを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   IP header + data
                  The original packet truncated to ensure that the size
                  of the redirect message does not exceed 576 octets.

オリジナルのパケットが再直接のメッセージのサイズが576の八重奏を超えていないのを保証するために先端を切らせたIPヘッダー+データ。

Description
                  The Redirected Header option is used in Redirect
                  messages and contains all or part of the packet that
                  is being redirected.

Redirected Headerがゆだねる記述は、Redirectメッセージで使用されて、向け直されているパケットのすべてか一部を含んでいます。

                  This option MUST be silently ignored for other
                  Neighbor Discovery messages.

他のNeighborディスカバリーメッセージのために静かにこのオプションを無視しなければなりません。

4.6.4.  MTU

4.6.4. MTU

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |           Reserved            |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                              MTU                              |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | タイプ| 長さ| 予約されます。| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MTU| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Narten, Nordmark & Simpson  Standards Track                    [Page 31]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[31ページ]。

Fields:

分野:

   Type           5

5をタイプしてください。

   Length         1

長さ1

   Reserved       This field is unused.  It MUST be initialized to zero
                  by the sender and MUST be ignored by the receiver.

予約されたThis分野は未使用です。 それを送付者がゼロに初期化しなければならなくて、受信機で無視しなければなりません。

   MTU            32-bit unsigned integer.  The recommended MTU for the
                  link.

MTU、32ビットの符号のない整数。 リンクへのお勧めのMTU。

Description
                  The MTU option is used in  Router Advertisement
                  messages to insure that all nodes on a link use the
                  same MTU value in those cases where the link MTU is
                  not well known.

MTUがゆだねる記述はリンクの上のすべてのノードがリンクMTUがよく知られていないそれらの場合に同じMTU値を使用するのを保障するRouter Advertisementメッセージで使用されます。

                  This option MUST be silently ignored for other
                  Neighbor Discovery messages.

他のNeighborディスカバリーメッセージのために静かにこのオプションを無視しなければなりません。

                  In configurations in which heterogeneous technologies
                  are bridged together, the maximum supported MTU may
                  differ from one segment to another.  If the bridges do
                  not generate ICMP Packet Too Big messages,
                  communicating nodes will be unable to use Path MTU to
                  dynamically determine the appropriate MTU on a per-
                  neighbor basis.  In such cases, routers use the MTU
                  option to specify an MTU value supported by all
                  segments.

異種の技術が一緒にブリッジされる構成では、MTUであるとサポートされた最大は1つのセグメントから別のセグメントまで異なるかもしれません。 ブリッジがICMP Packet Too Bigにメッセージを生成しないと、ノードを伝える場合aでダイナミックに適切なMTUを決定するのにPath MTUを使用できない、-、隣人基礎。 そのような場合、ルータは、すべてのセグメントによってサポートされたMTU値を指定するのにMTUオプションを使用します。

5.  CONCEPTUAL MODEL OF A HOST

5. ホストの概念モデル

   This section describes a conceptual model of one possible data
   structure organization that hosts (and to some extent routers) will
   maintain in interacting with neighboring nodes.  The described
   organization is provided to facilitate the explanation of how the
   Neighbor Discovery protocol should behave.  This document does not
   mandate that implementations adhere to this model as long as their
   external behavior is consistent with that described in this document.

このセクションはホスト(そして、ある程度ルータ)が隣接しているノードと対話する際に維持する1つの可能なデータ構造組織の概念モデルについて説明します。 Neighborディスカバリープロトコルがどう振る舞うべきであるかに関する説明を容易にするために説明された組織を提供します。 このドキュメントは、彼らの外部の振舞いが本書では説明されるそれと一致している限り、実装がこのモデルを固く守るのを強制しません。

   This model is only concerned with the aspects of host behavior
   directly related to Neighbor Discovery.  In particular, it does not
   concern itself with such issues as source address selection or the
   selecting of an outgoing interface on a multihomed host.

このモデルは直接Neighborディスカバリーに関連するホストの振舞いの局面に関係があるだけです。 特に、それは「マルチ-家へ帰」っているホストの上のソースアドレス選択や外向的なインタフェースの選択のような問題に携わりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 32]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[32ページ]。

5.1.  Conceptual Data Structures

5.1. 概念的なデータ構造

   Hosts will need to maintain the following pieces of information for
   each interface:

ホストは、各インタフェースのための以下の情報を保守する必要があるでしょう:

   Neighbor Cache
                - A set of entries about individual neighbors to which
                  traffic has been sent recently.  Entries are keyed on
                  the neighbor's on-link unicast IP address and contain
                  such information as its link-layer address, a flag
                  indicating whether the neighbor is a router or a host
                  (called IsRouter in this document), a pointer to any
                  queued packets waiting for address resolution to
                  complete, etc.

隣人Cache--最近、1セットの個々の隣人に関するエントリーをどのトラフィックに送ったか。 エントリーは、リンクに関する隣人のユニキャストIPアドレスで合わせられて、リンクレイヤアドレスのような情報を含んでいます、旗が、いずれへの指針が隣人がルータかホスト(本書ではIsRouterと呼ばれる)であることにかかわらず終了するアドレス解決などを待つパケットを列に並ばせたのを示して

                  A Neighbor Cache entry also contains information used
                  by the Neighbor Unreachability Detection algorithm,
                  including the reachability state, the number of
                  unanswered probes, and the time the next Neighbor
                  Unreachability Detection event is scheduled to take
                  place.

また、Neighbor CacheエントリーはNeighbor Unreachability Detectionアルゴリズムで使用される情報を含んでいます、可到達性状態、答えのない徹底的調査の数、および次のNeighbor Unreachability Detectionイベントが行われる予定である時を含んでいて。

   Destination Cache
                - A set of entries about destinations to which traffic
                  has been sent recently.  The Destination Cache
                  includes both on-link and off-link destinations and
                  provides a level of indirection into the Neighbor
                  Cache; the Destination Cache maps a destination IP
                  address to the IP address of the next-hop neighbor.
                  This cache is updated with information learned from
                  Redirect messages.  Implementations may find it
                  convenient to store additional information not
                  directly related to Neighbor Discovery in Destination
                  Cache entries, such as the Path MTU (PMTU) and round
                  trip timers maintained by transport protocols.

目的地Cache--最近、1セットの目的地に関するエントリーをどのトラフィックに送ったか。 Destination Cacheは両方のオンリンクとオフリンクの目的地を含めて、間接指定のレベルをNeighbor Cacheに供給します。 Destination Cacheは次のホップ隣人のIPアドレスに送付先IPアドレスを写像します。 情報がRedirectメッセージから学習されている状態で、このキャッシュをアップデートします。 実装によって、Destination Cacheエントリーで直接Neighborディスカバリーに関連しない追加情報を保存するのが便利であることがわかるかもしれません、トランスポート・プロトコルによって維持されたPath MTU(PMTU)や周遊旅行タイマのように。

   Prefix List  - A list of the prefixes that define a set of addresses
                  that are on-link.  Prefix List entries are created
                  from information received in Router Advertisements.
                  Each entry has an associated invalidation timer value
                  (extracted from the advertisement) used to expire
                  prefixes when they become invalid.  A special
                  "infinity" timer value specifies that a prefix remains
                  valid forever, unless a new (finite) value is received
                  in a subsequent advertisement.

Listを前に置いてください--1セットのリンクであるアドレスを定義する接頭語のリスト。 接頭語ListエントリーはRouter Advertisementsに受け取られた情報から作成されます。 無効になるとき、各エントリーで、接頭語を吐き出すのに、関連無効にするタイマ価値(広告から、抽出される)を使用します。 特別な「無限」タイマ価値は、接頭語がいつまでも有効なままで残っていると指定します、新しい(有限)値がその後の広告に受け取られない場合。

                  The link-local prefix is considered to be on the
                  prefix list with an infinite invalidation timer

リンクローカルの接頭語が接頭語リストに無限の無効にするタイマであると考えられます。

Narten, Nordmark & Simpson  Standards Track                    [Page 33]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[33ページ]。

                  regardless of whether routers are advertising a prefix
                  for it.  Received Router Advertisements SHOULD NOT
                  modify the invalidation timer for the link-local
                  prefix.

ルータがそれのために接頭語の広告を出しているかどうかにかかわらず。 容認されたRouter Advertisements SHOULDはリンクローカルの接頭語のために無効にするタイマを変更しません。

   Default Router List
                - A list of routers to which packets may be sent.
                  Router list entries point to entries in the Neighbor
                  Cache; the algorithm for selecting a default router
                  favors routers known to be reachable over those whose
                  reachability is suspect.  Each entry also has an
                  associated invalidation timer value (extracted from
                  Router Advertisements) used to delete entries that are
                  no longer advertised.

デフォルトRouter List--ルータのリストをどのパケットに送るかもしれないか。 ルータリストエントリーはNeighbor Cacheにエントリーを示します。 デフォルトルータを選択するためのアルゴリズムは可到達性が疑わしいそれらの上で届くのが知られているルータを支持します。 また、各エントリーで、もう広告に掲載されていないエントリーを削除するのに、関連無効にするタイマ価値(Router Advertisementsから、抽出される)を使用します。

   Note that the above conceptual data structures can be implemented
   using a variety of techniques.  One possible implementation is to use
   a single longest-match routing table for all of the above data
   structures.  Regardless of the specific implementation, it is
   critical that the Neighbor Cache entry for a router is shared by all
   Destination Cache entries using that router in order to prevent
   redundant Neighbor Unreachability Detection probes.

さまざまなテクニックを使用することで上の概念的なデータ構造を実装することができることに注意してください。 1つの可能な実装は上のデータ構造のすべてに単一の最も長いマッチ経路指定テーブルを使用することです。 特定の実装にかかわらず、ルータのためのNeighbor Cacheエントリーが余分なNeighbor Unreachability Detection徹底的調査を防ぐのにそのルータを使用しながらすべてのDestination Cacheエントリーで共有されるのは、重要です。

   Note also that other protocols (e.g. IPv6 Mobility) might add
   additional conceptual data structures.  An implementation is at
   liberty to implement such data structures in any way it pleases.  For
   example, an implementation could merge all conceptual data structures
   into a single routing table.

また、他のプロトコル(例えば、IPv6 Mobility)が追加概念的なデータ構造を加えるかもしれないことに注意してください。 実装は喜ばせるどんな方法でもそのようなデータ構造を実装するのにおいて自由です。 例えば、実装はすべての概念的なデータ構造を単一の経路指定テーブルに合併するかもしれません。

   The Neighbor Cache contains information maintained by the Neighbor
   Unreachability Detection algorithm.  A key piece of information is a
   neighbor's reachability state, which is one of five possible values.

Neighbor CacheはNeighbor Unreachability Detectionアルゴリズムによって保守された情報を含んでいます。 主要な情報は隣人の可到達性状態です。(その状態は5つの可能な値の1つです)。

   The following definitions are informal; precise definitions can be
   found in Section 7.3.2.

以下の定義は非公式です。 セクション7.3.2で厳密な定義を見つけることができます。

   INCOMPLETE  Address resolution is in progress and the link-layer
               address of the neighbor has not yet been determined.

INCOMPLETE Address解決は進行しています、そして、隣人のリンクレイヤアドレスはまだ決定していません。

   REACHABLE   Roughly speaking, the neighbor is known to have been
               reachable recently (within tens of seconds ago).

REACHABLE Roughlyが話して、隣人が最近(何十秒も前中に)届いたのが知られています。

   STALE       The neighbor is no longer known to be reachable but until
               traffic is sent to the neighbor, no attempt should be
               made to verify its reachability.

もう届くのを隣人のSTALEを知りませんが、可到達性について確かめるのを試みを全くトラフィックを隣人に送るまでするべきではありません。

   DELAY       The neighbor is no longer known to be reachable, and
               traffic has recently be sent to the neighbor.  Rather

もう届くのを隣人のDELAYを知りません、そして、最近、トラフィックを隣人に送りました。 むしろ

Narten, Nordmark & Simpson  Standards Track                    [Page 34]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[34ページ]。

               than probe the neighbor immediately, however, delay
               sending probes for a short while in order to give upper
               layer protocols a chance to provide reachability
               confirmation.

しかしながら、遅れ発信は、可到達性確認を提供する機会を上側の層のプロトコルに与えるために短時間すぐに隣人を調べるより調べられます。

   PROBE       The neighbor is no longer known to be reachable, and
               unicast Neighbor Solicitation probes are being sent to
               verify reachability.

もう届くのを隣人のPROBEを知りません、そして、可到達性について確かめるためにユニキャストNeighbor Solicitation探測装置を送ります。

5.2.  Conceptual Sending Algorithm

5.2. 概念的な送付アルゴリズム

   When sending a packet to a destination, a node uses a combination of
   the Destination Cache, the Prefix List, and the Default Router List
   to determine the IP address of the appropriate next hop, an operation
   known as "next-hop determination".  Once the IP address of the next
   hop is known, the Neighbor Cache is consulted for link-layer
   information about that neighbor.

パケットを目的地に送るとき、ノードは、次の適切なホップ(「次のホップ決断」として知られている操作)のIPアドレスを決定するのにDestination Cache、Prefix List、およびDefault Router Listの組み合わせを使用します。 次のホップのIPアドレスがいったん知られていると、Neighbor Cacheはその隣人のリンクレイヤ情報のために相談されます。

   Next-hop determination for a given unicast destination operates as
   follows.  The sender performs a longest prefix match against the
   Prefix List to determine whether the packet's destination is on- or
   off-link.  If the destination is on-link, the next-hop address is the
   same as the packet's destination address.  Otherwise, the sender
   selects a router from the Default Router List (following the rules
   described in Section 6.3.6).  If the Default Router List is empty,
   the sender assumes that the destination is on-link.

与えられたユニキャストの目的地のための次のホップ決断は以下の通り作動します。 送付者は、パケットの目的地がオンであるかリンクであるかを決定するためにPrefix Listに対して最も長い接頭語マッチを実行します。 目的地がリンクであるなら、次のホップアドレスはパケットの送付先アドレスと同じです。 さもなければ、送付者はDefault Router List(約束を守りますセクション6.3.6で説明される)からルータを選択します。 Default Router Listが空であるなら、送付者は、目的地がリンクであると仮定します。

   For efficiency reasons, next-hop determination is not performed on
   every packet that is sent.  Instead, the results of next-hop
   determination computations are saved in the Destination Cache (which
   also contains updates learned from Redirect messages).  When the
   sending node has a packet to send, it first examines the Destination
   Cache.  If no entry exists for the destination, next-hop
   determination is invoked to create a Destination Cache entry.

効率理由で、次のホップ決断は送られるあらゆるパケットに実行されるというわけではありません。 代わりに、次のホップ決断計算の結果はDestination Cacheで節約されます(また、どれがアップデートを含んでいるかはRedirectメッセージから学びました)。 送付ノードが送るパケットを持っているとき、それは最初に、Destination Cacheを調べます。 エントリーが全く目的地に存在していないなら、次のホップ決断は、Destination Cacheエントリーを作成するために呼び出されます。

   Once the IP address of the next-hop node is known, the sender
   examines the Neighbor Cache for link-layer information about that
   neighbor.  If no entry exists, the sender creates one, sets its state
   to INCOMPLETE, initiates Address Resolution, and then queues the data
   packet pending completion of address resolution.  For multicast-
   capable interfaces Address Resolution consists of sending a Neighbor
   Solicitation message and waiting for a Neighbor Advertisement.  When
   a Neighbor Advertisement response is received, the link-layer
   addresses is entered in the Neighbor Cache entry and the queued
   packet is transmitted.  The address resolution mechanism is described
   in detail in Section 7.2.

次のホップノードのIPアドレスがいったん知られていると、送付者はその隣人のリンクレイヤ情報がないかどうかNeighbor Cacheを調べます。 エントリーが全く存在していないなら、送付者は、アドレス解決の完成まで1つを作成して、INCOMPLETEに状態を設定して、Address Resolutionを開始して、データ・パケットを列に並ばせます。 マルチキャストのできるインタフェースに関しては、Address ResolutionはNeighbor Solicitationメッセージを送って、Neighbor Advertisementを待つのから成ります。 Neighbor Advertisement応答が受け取られているとき、リンクレイヤアドレスはNeighbor Cacheエントリーに入れられます、そして、列に並ばせられたパケットは送られます。 アドレス解決メカニズムはセクション7.2で詳細に説明されます。

Narten, Nordmark & Simpson  Standards Track                    [Page 35]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[35ページ]。

   For multicast packets the next-hop is always the (multicast)
   destination address and is considered to be on-link.  The procedure
   for determining the link-layer address corresponding to a given IP
   multicast address can be found in a separate document that covers
   operating IP over a particular link type (e.g., [IPv6-ETHER]).

マルチキャストパケットに関しては、次のホップは、いつも(マルチキャスト)送付先アドレスであり、リンクであると考えられます。 特定のリンク型(例えば、[IPv6-ETHER])で操作IPをカバーする別々のドキュメントで与えられたIPマルチキャストアドレスに対応するリンクレイヤアドレスを決定するための手順を見つけることができます。

   Each time a Neighbor Cache entry is accessed while transmitting a
   unicast packet, the sender checks Neighbor Unreachability Detection
   related information according to the Neighbor Unreachability
   Detection algorithm (Section 7.3).  This unreachability check might
   result in the sender transmitting a unicast Neighbor Solicitation to
   verify that the neighbor is still reachable.

Neighbor Cacheエントリーがユニキャストパケットを伝えている間にアクセスされている各回、Neighbor Unreachability Detectionアルゴリズム(セクション7.3)によると、送付者はNeighbor Unreachability Detectionの関連する情報をチェックします。 この「非-可到達性」チェックは隣人がまだ届いていることを確かめるためにユニキャストNeighbor Solicitationを伝える送付者をもたらすかもしれません。

   Next-hop determination is done the first time traffic is sent to a
   destination.  As long as subsequent communication to that destination
   proceeds successfully, the Destination Cache entry continues to be
   used.  If at some point communication ceases to proceed, as
   determined by the Neighbor Unreachability Detection algorithm, next-
   hop determination may need to be performed again.  For example,
   traffic through a failed router should be switched to a working
   router.  Likewise, it may be possible to reroute traffic destined for
   a mobile node to a "mobility agent".

トラフィックが初めて目的地に送られるとき、次のホップ決断をします。 その目的地へのその後のコミュニケーションが首尾よく続く限り、Destination Cacheエントリーは、使用され続けています。 コミュニケーションが、Neighbor Unreachability Detectionアルゴリズムで決定するように何らかのポイントで続くのをやめるなら、次のホップ決断は、再び実行される必要があるかもしれません。 例えば、失敗したルータを通したトラフィックは働くルータに切り換えられるべきです。 同様に、モバイルノードのために「移動性エージェント」に運命づけられたトラフィックを別ルートで送るのは可能であるかもしれません。

   Note that when a node redoes next-hop determination there is no need
   to discard the complete Destination Cache entry.  In fact, it is
   generally beneficial to retain such cached information as the PMTU
   and round trip timer values that may also be kept in the Destination
   Cache entry.

ノードがそこで次のホップ決断をやり直すとき、それが完全なDestination Cacheエントリーを捨てる必要性でないことに注意してください。 事実上、一般に、また、Destination Cacheエントリーに保たれるかもしれないPMTUと周遊旅行タイマ値のようなキャッシュされた情報を保有するのは有益です。

   Routers and multihomed hosts have multiple interfaces.  The remainder
   of this document assumes that all sent and received Neighbor
   Discovery messages refer to the interface of appropriate context.
   For example, when responding to a Router Solicitation, the
   corresponding Router Advertisement is sent out the interface on which
   the solicitation was received.

ルータと「マルチ-家へ帰」っているホストには、複数のインタフェースがあります。 このドキュメントの残りは、すべてが発信したと仮定します、そして、受信されたNeighborディスカバリーメッセージは適切な関係のインタフェースについて言及します。 例えば、Router Solicitation、対応するRouter Advertisementに応じるのが、いつかが懇願が受けられたインタフェースを出しました。

5.3.  Garbage Collection and Timeout Requirements

5.3. ガーベージコレクションとタイムアウト要件

   The conceptual data structures described above use different
   mechanisms for discarding potentially stale or unused information.

概念的なデータ構造は、潜在的に聞き古した未使用の情報を捨てるために使用を超えて異なったメカニズムについて説明しました。

   From the perspective of correctness there is no need to periodically
   purge Destination and Neighbor Cache entries.  Although stale
   information can potentially remain in the cache indefinitely, the
   Neighbor Unreachability Detection algorithm ensures that stale
   information is purged quickly if it is actually being used.

正当性の見解から、定期的にDestinationとNeighbor Cacheエントリーを掃除する必要性は全く来ていません。 聞き古した情報はキャッシュに無期限に潜在的に残ることができますが、Neighbor Unreachability Detectionアルゴリズムは、それが実際に使用されているなら聞き古した情報がすぐに掃除されるのを確実にします。

Narten, Nordmark & Simpson  Standards Track                    [Page 36]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[36ページ]。

   To limit the storage needed for the Destination and Neighbor Caches,
   a node may need to garbage-collect old entries.  However, care must
   be taken to insure that sufficient space is always present to hold
   the working set of active entries.  A small cache may result in an
   excessive number of Neighbor Discovery messages if entries are
   discarded and rebuilt in quick succession.  Any LRU-based policy that
   only reclaims entries that have not been used in some time (e.g., ten
   minutes or more) should be adequate for garbage-collecting unused
   entries.

DestinationとNeighbor Cachesに必要であるストレージを制限するために、ノードは、古いエントリーをゴミで集める必要があるかもしれません。 しかしながら、十分なスペースが活発なエントリーのワーキングセットを保持するためにいつも存在しているのを保障するために注意しなければなりません。 エントリーが間断なく捨てられて、再建されるなら、小さいキャッシュは過度の数のNeighborディスカバリーメッセージをもたらすかもしれません。 ゴミを集める未使用のエントリーに、いつか使用されていないエントリー(例えば、10分以上)を開墾するだけであるどんなLRUベースの方針も適切であるべきです。

   A node should retain entries in the Default Router List and the
   Prefix List until their lifetimes expire.  However, a node may
   garbage collect entries prematurely if it is low on memory.  If not
   all routers are kept on the Default Router list, a node should retain
   at least two entries in the Default Router List (and preferably more)
   in order to maintain robust connectivity for off-link destinations.

彼らの寿命が期限が切れるまで、ノードはDefault Router ListとPrefix Listでエントリーを保有するはずです。 しかしながら、ノードは集めるかもしれません。それがメモリで低いなら、ゴミは早まって、エントリーを集めます。 そうでなければ、すべてのルータがDefault Routerリストに保たれて、ノードは、オフリンクの目的地に強健な接続性を維持するためにDefault Router List(望ましくはさらに)で少なくとも2つのエントリーを保有するはずです。

   When removing an entry from the Prefix List there is no need to purge
   any entries from the Destination or Neighbor Caches.  Neighbor
   Unreachability Detection will efficiently purge any entries in these
   caches that have become invalid.  When removing an entry from the
   Default Router List, however, any entries in the Destination Cache
   that go through that router must perform next-hop determination again
   to select a new default router.

Prefix Listからエントリーを取り除くとき、どんなエントリーからもDestinationかNeighbor Cachesから追放する必要は全くありません。 隣人Unreachability Detectionは効率的に無効になったこれらのキャッシュにおけるどんなエントリーも掃除するでしょう。 しかしながら、Default Router Listからエントリーを取り除くとき、そのルータに直面しているDestination Cacheのどんなエントリーも、新しいデフォルトルータを選択するために再び次のホップ決断を実行しなければなりません。

6.  ROUTER AND PREFIX DISCOVERY

6. ルータAND接頭語発見

   This section describes router and host behavior related to the Router
   Discovery portion of Neighbor Discovery.  Router Discovery is used to
   locate neighboring routers as well as learn prefixes and
   configuration parameters related to address autoconfiguration.

このセクションはNeighborディスカバリーのRouterディスカバリー部分に関連するルータとホストの振舞いについて説明します。 ルータディスカバリーは、隣接しているルータの場所を見つけて、接頭語と設定パラメータがアドレス自動構成に関連したことを学ぶのに使用されます。

   Prefix Discovery is the process through which hosts learn the ranges
   of IP addresses that reside on-link and can be reached directly
   without going through a router.  Routers send Router Advertisements
   that indicate whether the sender is willing to be a default router.
   Router Advertisements also contain Prefix Information options that
   list the set of prefixes that identify on-link IP addresses.

接頭語ディスカバリーはホストをオンリンクであることであるIPアドレスの範囲を学んで、直接ルータに直面していなくて連絡できるプロセスです。 ルータは送付者が、デフォルトルータであっても構わないと思っているかどうかを示すRouter Advertisementsを送ります。 また、ルータAdvertisementsはリンクに関するIPアドレスを特定する接頭語のセットを記載するPrefix情報オプションを含んでいます。

   Stateless Address Autoconfiguration must also obtain subnet prefixes
   as part of configuring addresses.  Although the prefixes used for
   address autoconfiguration are logically distinct from those used for
   on-link determination, autoconfiguration information is piggybacked
   on Router Discovery messages to reduce network traffic.  Indeed, the
   same prefixes can be advertised for on-link determination and address
   autoconfiguration by specifying the appropriate flags in the Prefix
   Information options.  See [ADDRCONF] for details on how
   autoconfiguration information is processed.

また、状態がないAddress Autoconfigurationは構成アドレスの一部としてサブネット接頭語を得なければなりません。 アドレス自動構成に使用される接頭語はリンクにおける決断に使用されるものと論理的に異なっていますが、自動構成情報はネットワークトラフィックを減少させるRouterディスカバリーメッセージで背負われます。 本当に、同じ接頭語はリンクにおける決断のために広告を出して、Prefix情報オプションで適切なフラグを指定することによって、自動構成を扱うことができます。 自動構成情報がどう処理されるかに関する詳細に関して[ADDRCONF]を見てください。

Narten, Nordmark & Simpson  Standards Track                    [Page 37]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[37ページ]。

6.1.  Message Validation

6.1. メッセージ合法化

6.1.1.  Validation of Router Solicitation Messages

6.1.1. ルータ懇願メッセージの合法化

   Hosts MUST silently discard any received Router Solicitation
   Messages.

ホストは静かにどんな容認されたRouter Solicitation Messagesも捨てなければなりません。

   A router MUST silently discard any received Router Solicitation
   messages that do not satisfy all of the following validity checks:

ルータは静かに以下のバリディティチェックのすべてを満たさないどんな受信されたRouter Solicitationメッセージも捨てなければなりません:

   - The IP Hop Limit field has a value of 255, i.e., the packet could
     not possibly have been forwarded by a router.

- IP Hop Limit分野には、255の値があります、すなわち、ルータはパケットを進めることができませんでした。

   - If the message includes an IP Authentication Header, the message
     authenticates correctly.

- メッセージはIP Authentication Header、メッセージを含んでいます。正しく、認証します。

   - ICMP Checksum is valid.

- ICMP Checksumは有効です。

   - ICMP Code is 0.

- ICMP Codeは0歳です。

   - ICMP length (derived from the IP length) is 8 or more octets.

- ICMPの長さ(IPの長さから、派生する)は8つ以上の八重奏です。

   - All included options have a length that is greater than zero.

- すべての含まれているオプションには、ゼロ以上である長さがあります。

   The contents of the Reserved field, and of any unrecognized options,
   MUST be ignored.  Future, backward-compatible changes to the protocol
   may specify the contents of the Reserved field or add new options;
   backward-incompatible changes may use different Code values.

Reserved分野、およびどんな認識されていないオプションのコンテンツも無視しなければなりません。 プロトコルへの将来的で、後方コンパチブル変化は、Reserved分野のコンテンツを指定するか、または新しいオプションを加えるかもしれません。 後方の非互換な変化は異なったCode値を使用するかもしれません。

   The contents of any defined options that are not specified to be used
   with Router Solicitation messages MUST be ignored and the packet
   processed as normal.  The only defined option that may appear is the
   Source Link-Layer Address option.

Router Solicitationメッセージと共に使用されるために指定されない少しの定義されたオプションのコンテンツも無視しなければなりませんでした、そして、パケットは標準として処理されました。 現れるかもしれない唯一の定義されたオプションがSource Link-層のAddressオプションです。

   A solicitation that passes the validity checks is called a "valid
   solicitation".

バリディティチェックを通過する懇願は「有効な懇願」と呼ばれます。

6.1.2.  Validation of Router Advertisement Messages

6.1.2. ルータ通知メッセージの合法化

   A node MUST silently discard any received Router Advertisement
   messages that do not satisfy all of the following validity checks:

ノードは静かに以下のバリディティチェックのすべてを満たさないどんな受信されたRouter Advertisementメッセージも捨てなければなりません:

   - IP Source Address is a link-local address.  Routers must use their
     link-local address as the source for Router Advertisement and
     Redirect messages so that hosts can uniquely identify routers.

- IP Source Addressはリンクローカルアドレスです。 ホストが唯一ルータを特定できて、ルータはRouter AdvertisementとRedirectメッセージにソースとしてそれらのリンクローカルアドレスを使用しなければなりません。

   - The IP Hop Limit field has a value of 255, i.e., the packet could
     not possibly have been forwarded by a router.

- IP Hop Limit分野には、255の値があります、すなわち、ルータはパケットを進めることができませんでした。

Narten, Nordmark & Simpson  Standards Track                    [Page 38]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[38ページ]。

   - If the message includes an IP Authentication Header, the message
     authenticates correctly.

- メッセージはIP Authentication Header、メッセージを含んでいます。正しく、認証します。

   - ICMP Checksum is valid.

- ICMP Checksumは有効です。

   - ICMP Code is 0.

- ICMP Codeは0歳です。

   - ICMP length (derived from the IP length) is 16 or more octets.

- ICMPの長さ(IPの長さから、派生する)は16以上の八重奏です。

   - All included options have a length that is greater than zero.

- すべての含まれているオプションには、ゼロ以上である長さがあります。

   The contents of the Reserved field, and of any unrecognized options,
   MUST be ignored.  Future, backward-compatible changes to the protocol
   may specify the contents of the Reserved field or add new options;
   backward-incompatible changes may use different Code values.

Reserved分野、およびどんな認識されていないオプションのコンテンツも無視しなければなりません。 プロトコルへの将来的で、後方コンパチブル変化は、Reserved分野のコンテンツを指定するか、または新しいオプションを加えるかもしれません。 後方の非互換な変化は異なったCode値を使用するかもしれません。

   The contents of any defined options that are not specified to be used
   with Router Advertisement messages MUST be ignored and the packet
   processed as normal.  The only defined options that may appear are
   the Source Link-Layer Address, Prefix Information and MTU options.

Router Advertisementメッセージと共に使用されるために指定されない少しの定義されたオプションのコンテンツも無視しなければなりませんでした、そして、パケットは標準として処理されました。 現れるかもしれない唯一の定義されたオプションが、Address Source Link-層と、Prefix情報とMTUオプションです。

   An advertisement that passes the validity checks is called a "valid
   advertisement".

バリディティチェックを通過する広告は「有効な広告」と呼ばれます。

6.2.  Router Specification

6.2. ルータ仕様

6.2.1.  Router Configuration Variables

6.2.1. ルータ構成変数

   A router MUST allow for the following conceptual variables to be
   configured by system management.  The specific variable names are
   used for demonstration purposes only, and an implementation is not
   required to have them, so long as its external behavior is consistent
   with that described in this document.  Default values are specified
   to simplify configuration in common cases.

ルータは、以下の概念的な変数がシステム管理で構成されるのを許容しなければなりません。 特定の変数名はデモンストレーションの目的だけに使用されます、そして、実装はそれらを持つのに必要ではありません、外部の振舞いが本書では説明されるそれと一致している限り。 デフォルト値は、よくある例における構成を簡素化するために指定されます。

   The default values for some of the variables listed below may be
   overridden by specific documents that describe how IPv6 operates over
   different link layers.  This rule simplifies the configuration of
   Neighbor Discovery over link types with widely differing performance
   characteristics.

以下に記載された変数のいくつかのデフォルト値はIPv6が異なったリンクレイヤの上でどう作動するかを説明する特定のドキュメントによってくつがえされるかもしれません。 この規則はリンク型ではなはだしく異なった性能の特性でNeighborディスカバリーの構成を簡素化します。

   For each multicast interface:

各マルチキャストには、連結してください:

     AdvSendAdvertisements
                    A flag indicating whether or not the router sends
                    periodic Router Advertisements and responds to
                    Router Solicitations.

ルータが周期的なRouter Advertisementsを送って、Router Solicitationsに応じるかどうかを示しながら、AdvSendAdvertisements Aは弛みます。

Narten, Nordmark & Simpson  Standards Track                    [Page 39]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[39ページ]。

                    Default: FALSE

デフォルト: 誤る

                    Note that AdvSendAdvertisements MUST be false by
                    default so that a node will not accidentally start
                    acting as a router unless it is explicitly
                    configured by system management to send Router
                    Advertisements.

それがRouter Advertisementsを送るためにシステム管理で明らかに構成されないとノードがルータとして偶然機能し始めないようにAdvSendAdvertisementsがデフォルトで偽でなければならないことに注意してください。

     MaxRtrAdvInterval
                    The maximum time allowed between sending unsolicited
                    multicast Router Advertisements from the interface,
                    in seconds.  MUST be no less than 4 seconds and no
                    greater than 1800 seconds.

最大の時間が秒に送付の求められていないマルチキャストRouter Advertisementsの間にインタフェースから許容したMaxRtrAdvInterval。 いいえは4秒未満と1800秒以下のそうであるに違いありませんか?

                    Default: 600 seconds

デフォルト: 600秒

     MinRtrAdvInterval
                    The minimum time allowed between sending unsolicited
                    multicast Router Advertisements from the interface,
                    in seconds.  MUST be no less than 3 seconds and no
                    greater than .75 * MaxRtrAdvInterval.

最小の時間が秒に送付の求められていないマルチキャストRouter Advertisementsの間にインタフェースから許容したMinRtrAdvInterval。 3秒未満のノー、と、より.75*MaxRtrAdvIntervalはそうであるに違いありませんか?

                    Default: 0.33 * MaxRtrAdvInterval

デフォルト: 0.33*MaxRtrAdvInterval

     AdvManagedFlag
                    The true/false value to be placed in the "Managed
                    address configuration" flag field in the Router
                    Advertisement.  See [ADDRCONF].

Router Advertisementの「管理されたアドレス構成」旗の分野に置かれるべき本当のAdvManagedFlag/誤った値。 [ADDRCONF]を見てください。

                    Default: FALSE

デフォルト: 誤る

     AdvOtherConfigFlag
                    The true/false value to be placed in the "Other
                    stateful configuration" flag field in the Router
                    Advertisement.  See [ADDRCONF].

Router Advertisementの「他のstateful構成」旗の分野に置かれるべき本当のAdvOtherConfigFlag/誤った値。 [ADDRCONF]を見てください。

                    Default: FALSE

デフォルト: 誤る

     AdvLinkMTU     The value to be placed in MTU options sent by the
                    router.  A value of zero indicates that no MTU
                    options are sent.

AdvLinkMTU、ルータによって送られたMTUオプションに置かれるべき値。 ゼロの値は、MTUオプションが全く送られないのを示します。

                    Default: 0

デフォルト: 0

     AdvReachableTime
                    The value to be placed in the Reachable Time field
                    in the Router Advertisement messages sent by the
                    router.  The value zero means unspecified (by this

AdvReachableTime、ルータによって送られたRouter AdvertisementメッセージにReachable Time分野に置かれるべき値。 値ゼロが不特定であることを意味する、(これ

Narten, Nordmark & Simpson  Standards Track                    [Page 40]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[40ページ]。

                    router).  MUST be no greater than 3,600,000
                    milliseconds (1 hour).

ルータ) 360万ミリセカンド以下(1時間)はそうであるに違いありませんか?

                    Default: 0

デフォルト: 0

     AdvRetransTimer
                    The value to be placed in the Retrans Timer field in
                    the Router Advertisement messages sent by the
                    router.  The value zero means unspecified (by this
                    router).

AdvRetransTimer、ルータによって送られたRouter AdvertisementメッセージにRetrans Timer分野に置かれるべき値。 値ゼロは不特定であることを(このルータによる)意味します。

                    Default: 0

デフォルト: 0

     AdvCurHopLimit
                    The default value to be placed in the Cur Hop Limit
                    field in the Router Advertisement messages sent by
                    the router.  The value should be set to that current
                    diameter of the Internet.  The value zero means
                    unspecified (by this router).

AdvCurHopLimitはルータで発信しましたデフォルトが、Router AdvertisementメッセージにCur Hop Limit分野に置かれるために評価する。 値はインターネットのその現在の直径に設定されるべきです。 値ゼロは不特定であることを(このルータによる)意味します。

                    Default:  The value specified in the "Assigned
                    Numbers" RFC [ASSIGNED] that was in effect at the
                    time of implementation.

デフォルト: 値は実装時点で有効であった「規定番号」RFC[ASSIGNED]で指定しました。

     AdvDefaultLifetime
                    The value to be placed in the Router Lifetime field
                    of Router Advertisements sent from the interface, in
                    seconds.  MUST be either zero or between
                    MaxRtrAdvInterval and 9000 seconds.  A value of zero
                    indicates that the router is not to be used as a
                    default router.

AdvDefaultLifetime、Router AdvertisementsのRouter Lifetime分野に置かれるべき値は秒にインタフェースから発信しました。 ゼロであるかMaxRtrAdvIntervalと9000秒の間でそうしなければならなくなってください。 ゼロの値は、ルータがデフォルトルータとして使用されないことであることを示します。

                    Default: 3 * MaxRtrAdvInterval

デフォルト: 3*MaxRtrAdvInterval

     AdvPrefixList
                    A list of prefixes to be placed in Prefix
                    Information options in Router Advertisement messages
                    sent from the interface.

Router AdvertisementメッセージにPrefix情報オプションに置かれるべき接頭語のAdvPrefixList Aリストはインタフェースから発信しました。

                    Default: all prefixes that the router advertises via
                    routing protocols as being on-link for the interface
                    from which the advertisement is sent.  The link-
                    local prefix SHOULD NOT be included in the list of
                    advertised prefixes.

デフォルト: ルータが広告が送られるインタフェースにリンクであるとしてのルーティング・プロトコルで広告を出すすべての接頭語。 リンクローカルは含まれているコネが広告を出している接頭語のリストであったならSHOULD NOTを前に置きます。

                    Each prefix has an associated:

各接頭語が持っている、関連する:

                       AdvValidLifetime

AdvValidLifetime

Narten, Nordmark & Simpson  Standards Track                    [Page 41]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[41ページ]。

                            The value to be placed in the Valid Lifetime
                            in the Prefix Information option, in
                            seconds.  The designated value of all 1's
                            (0xffffffff) represents infinity.

Prefix情報オプション、秒にValid Lifetimeに置かれるべき値。 すべての1(0xffffffff)の指定された値は無限を表します。

                            Default: infinity.

デフォルト: 無限。

                       AdvOnLinkFlag
                            The value to be placed in the on-link flag
                            ("L-bit") field in the Prefix Information
                            option.

AdvOnLinkFlag、Prefix情報オプションでリンクの上の旗(「Lで噛み付いている」)の分野に置かれるべき値。

                            Default: TRUE

デフォルト: 本当

                    Automatic address configuration [ADDRCONF] defines
                    additional information associated with each the
                    prefixes:

オートマチックは[ADDRCONF]がそれぞれ関連づけられた追加情報を定義する構成に接頭語を扱います:

                       AdvPreferredLifetime
                            The value to be placed in the Preferred
                            Lifetime in the Prefix Information option,
                            in seconds.  The designated value of all 1's
                            (0xffffffff) represents infinity.  See
                            [ADDRCONF].

AdvPreferredLifetime、Prefix情報オプション、秒にPreferred Lifetimeに置かれるべき値。 すべての1(0xffffffff)の指定された値は無限を表します。 [ADDRCONF]を見てください。

                            Default: 604800 seconds (7 days)

デフォルト: 604800秒(7日間)

                       AdvAutonomousFlag
                            The value to be placed in the Autonomous
                            Flag field in the Prefix Information option.
                            See [ADDRCONF].

AdvAutonomousFlag、Prefix情報オプションでAutonomous Flag分野に置かれるべき値。 [ADDRCONF]を見てください。

                            Default: TRUE

デフォルト: 本当

   The above variables contain information that is placed in outgoing
   Router Advertisement messages.  Hosts use the received information to
   initialize a set of analogous variables that control their external
   behavior (see Section 6.3.2).  Some of these host variables (e.g.,
   CurHopLimit, RetransTimer, and ReachableTime) apply to all nodes
   including routers.  In practice, these variables may not actually be
   present on routers, since their contents can be derived from the
   variables described above.  However, external router behavior MUST be
   the same as host behavior with respect to these variables.  In
   particular, this includes the occasional randomization of the
   ReachableTime value as described in Section 6.3.2.

上の変数は送信するRouter Advertisementメッセージに置かれる情報を含んでいます。 ホストは、彼らの外部の振舞いを制御する1セットの類似の変数を初期化するのに受信された情報を使用します(セクション6.3.2を見てください)。 これらのホスト変数(例えば、CurHopLimit、RetransTimer、およびReachableTime)のいくつかがルータを含むすべてのノードに適用されます。 実際には、これらの変数は実際にルータに存在していないかもしれません、上で説明された変数からそれらのコンテンツを得ることができるので。 しかしながら、外部のルータの振舞いはこれらの変数に関してホストの振舞いと同じであるに違いありません。 特に、これはセクション6.3.2で説明されるようにReachableTime価値の時々の無作為化を含んでいます。

   Protocol constants are defined in Section 10.

プロトコル定数はセクション10で定義されます。

Narten, Nordmark & Simpson  Standards Track                    [Page 42]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[42ページ]。

6.2.2.  Becoming An Advertising Interface

6.2.2. 広告インタフェースになります。

   The term "advertising interface" refers to any functioning and
   enabled multicast interface that has at least one unicast IP address
   assigned to it and whose corresponding AdvSendAdvertisements flag is
   TRUE.  A router MUST NOT send Router Advertisements out any interface
   that is not an advertising interface.

「広告インタフェース」という用語は少なくとも1つのユニキャストIPアドレスをそれに割り当てさせて、対応するAdvSendAdvertisements旗がTRUEであるどんな機能していて可能にされたマルチキャストインタフェースについても言及します。 ルータは広告インタフェースでないどんなインタフェースからもRouter Advertisementsを送ってはいけません。

   An interface may become an advertising interface at times other than
   system startup.  For example:

システム起動を除いて、インタフェースは時には、広告インタフェースになるかもしれません。 例えば:

   - changing the AdvSendAdvertisements flag on an enabled interface
     from FALSE to TRUE, or

- または可能にされたインタフェースでAdvSendAdvertisements旗をFALSEからTRUEに変える。

   - administratively enabling the interface, if it had been
     administratively disabled, and its AdvSendAdvertisements flag is
     TRUE, or

- またはそれが行政上無効にされて、AdvSendAdvertisements旗がTRUEであるなら行政上インタフェースを可能にする。

   - enabling IP forwarding capability (i.e., changing the system from
     being a host to being a router), when the interface's
     AdvSendAdvertisements flag is TRUE.

- インタフェースのAdvSendAdvertisements旗がTRUEであるときに、IP推進能力(すなわち、システムをホストであるのからルータに変える)を可能にします。

   A router MUST join the all-routers multicast address on an
   advertising interface.  Routers respond to Router Solicitations sent
   to the all-routers address and verify the consistency of Router
   Advertisements sent by neighboring routers.

ルータは広告インタフェースに関するオールルータマルチキャストアドレスを接合しなければなりません。 ルータは、オールルータアドレスに送られたRouter Solicitationsに応じて、隣接しているルータによって送られたRouter Advertisementsの一貫性について確かめます。

6.2.3.  Router Advertisement Message Content

6.2.3. ルータ通知メッセージ内容

   A router sends periodic as well as solicited Router Advertisements
   out its advertising interfaces.  Outgoing Router Advertisements are
   filled with the following values consistent with the message format
   given in Section 4.2:

ルータは広告インタフェースから周期的で請求されたRouter Advertisementsを送ります。 出発しているRouter Advertisementsはセクション4.2で与えるメッセージ・フォーマットと一致した以下の値で満たされます:

   - In the Router Lifetime field: the interface's configured
     AdvDefaultLifetime.

- Router Lifetimeでは、以下をさばいてください。 インタフェースはAdvDefaultLifetimeを構成しました。

   - In the M and O flags: the interface's configured AdvManagedFlag and
     AdvOtherConfigFlag, respectively.  See [ADDRCONF].

- MとO旗で: インタフェースはそれぞれAdvManagedFlagとAdvOtherConfigFlagを構成しました。 [ADDRCONF]を見てください。

   - In the Cur Hop Limit field: the interface's configured CurHopLimit.

- Cur Hop Limitでは、以下をさばいてください。 インタフェースはCurHopLimitを構成しました。

   - In the Reachable Time field: the interface's configured
     AdvReachableTime.

- Reachable Timeでは、以下をさばいてください。 インタフェースはAdvReachableTimeを構成しました。

   - In the Retrans Timer field: the interface's configured
     AdvRetransTimer.

- Retrans Timerでは、以下をさばいてください。 インタフェースはAdvRetransTimerを構成しました。

Narten, Nordmark & Simpson  Standards Track                    [Page 43]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[43ページ]。

   - In the options:

- オプションで:

        o Source Link-Layer Address option: link-layer address of the
          sending interface.  This option MAY be omitted to facilitate
          in-bound load balancing over replicated interfaces.

o ソースLink-層のAddressオプション: 送付インタフェースのリンクレイヤアドレス。 このオプションは、模写されたインタフェースの上で行きのロードバランシングを容易にするために省略されるかもしれません。

        o MTU option: the interface's configured AdvLinkMTU value if the
          value is non-zero.  If AdvLinkMTU is zero the MTU option is
          not sent.

o MTUオプション: インタフェースは値が非ゼロであるならAdvLinkMTU値を構成しました。 AdvLinkMTUがゼロであるなら、MTUオプションは送られません。

        o Prefix Information options: one Prefix Information option for
          each prefix listed in AdvPrefixList with the option fields set
          from the information in the AdvPrefixList entry as follows:

o 情報オプションを前に置いてください: オプション・フィールドがあるAdvPrefixListに記載された各接頭語あたり1つのPrefix情報オプションが以下のAdvPrefixListエントリーにおける情報からセットしました:

             - In the "on-link" flag: the entry's AdvOnLinkFlag.

- 「オンリンク」では、弛んでください: エントリーのAdvOnLinkFlag。

             - In the Valid Lifetime field: the entry's
               AdvValidLifetime.

- Valid Lifetimeでは、以下をさばいてください。 エントリーのAdvValidLifetime。

             - In the "Autonomous address configuration" flag: the
               entry's AdvAutonomousFlag.

- 「自治のアドレス構成」では、弛んでください: エントリーのAdvAutonomousFlag。

             - In the Preferred Lifetime field: the entry's
               AdvPreferredLifetime.

- Preferred Lifetimeでは、以下をさばいてください。 エントリーのAdvPreferredLifetime。

   A router might want to send Router Advertisements without advertising
   itself as a default router.  For instance, a router might advertise
   prefixes for address autoconfiguration while not wishing to forward
   packets.  Such a router sets the Router Lifetime field in outgoing
   advertisements to zero.

ルータはデフォルトルータとして広告のないRouter Advertisements自身を送りたがっているかもしれません。 例えば、パケットを進めることを願っていない間、ルータはアドレス自動構成のために接頭語の広告を出すかもしれません。 そのようなルータは外向的な広告におけるRouter Lifetime分野をゼロに設定します。

   A router MAY choose not to include some or all options when sending
   unsolicited Router Advertisements.  For example, if prefix lifetimes
   are much longer than AdvDefaultLifetime, including them every few
   advertisements may be sufficient.  However, when responding to a
   Router Solicitation or while sending the first few initial
   unsolicited advertisements, a router SHOULD include all options so
   that all information (e.g., prefixes) is propagated quickly during
   system initialization.

ルータは、求められていないRouter Advertisementsを送るとき、いくつかかすべてのオプションを含んでいるというわけではないのを選ぶかもしれません。 例えば、接頭語であるなら、寿命はAdvDefaultLifetime、あらゆるわずかな広告単位でそれらを含んでいるのが十分であるかもしれないというよりもはるかに長いです。 しかしながら、Router Solicitationに応じるか、または1番目を送って、わずかしか未承諾広告に頭文字をつけていない間、ルータSHOULDがすべてのオプションを含んでいるので、すべての情報(例えば、接頭語)がシステム初期化の間、すばやく伝播されます。

   If including all options causes the size of an advertisement to
   exceed the link MTU, multiple advertisements can be sent, each
   containing a subset of the options.

オプションで広告のサイズをリンクMTUを超えているすべてを含んでいるなら、多ページ広告を送ることができます、それぞれオプションの部分集合を含んでいて。

Narten, Nordmark & Simpson  Standards Track                    [Page 44]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[44ページ]。

6.2.4.  Sending Unsolicited Router Advertisements

6.2.4. 送付の求められていないルータ通知

   A host MUST NOT send Router Advertisement messages at any time.

ホストはいつでも、メッセージをRouter Advertisementに送ってはいけません。

   Unsolicited Router Advertisements are not strictly periodic: the
   interval between subsequent transmissions is randomized to reduce the
   probability of synchronization with the advertisements from other
   routers on the same link [SYNC].  Each advertising interface has its
   own timer.  Whenever a multicast advertisement is sent from an
   interface, the timer is reset to a uniformly-distributed random value
   between the interface's configured MinRtrAdvInterval and
   MaxRtrAdvInterval; expiration of the timer causes the next
   advertisement to be sent and a new random value to be chosen.

求められていないRouter Advertisementsは厳密に周期的ではありません: その後のトランスミッションの間隔は、同じリンク[SYNC]で他のルータからの広告との同期の確率を減少させるためにランダマイズされます。 それぞれの広告インタフェースには、それ自身のタイマがあります。 インタフェースからマルチキャスト広告を送るときはいつも、タイマはインタフェースの構成されたMinRtrAdvIntervalとMaxRtrAdvIntervalの間の一様に分散している無作為の値にリセットされます。 タイマの満了で、送られる次の広告と新しい無作為の値を選びます。

   For the first few advertisements (up to
   MAX_INITIAL_RTR_ADVERTISEMENTS) sent from an interface when it
   becomes an advertising interface, if the randomly chosen interval is
   greater than MAX_INITIAL_RTR_ADVERT_INTERVAL, the timer SHOULD be set
   to MAX_INITIAL_RTR_ADVERT_INTERVAL instead.  Using a smaller interval
   for the initial advertisements increases the likelihood of a router
   being discovered quickly when it first becomes available, in the
   presence of possible packet loss.

広告インタフェースになるときインタフェースから送られたわずかな最初の広告(マックス_INITIAL_RTR_ADVERTISEMENTSまでの)のために、手当たりしだいに選ばれた間隔が_ADVERT_INTERVAL、マックス_INITIAL_RTRタイマSHOULDより大きいなら、代わりにマックス_INITIAL_RTR_ADVERT_INTERVALにセットしてください。 初期の広告のために、より小さい間隔を費やすと、最初に利用可能になるときすぐに発見されるルータの可能性は広げられます、可能なパケット損失の面前で。

   The information contained in Router Advertisements may change through
   actions of system management.  For instance, the lifetime of
   advertised prefixes may change, new prefixes could be added, a router
   could cease to be a router (i.e., switch from being a router to being
   a host), etc.  In such cases, the router MAY transmit up to
   MAX_INITIAL_RTR_ADVERTISEMENTS unsolicited advertisements, using the
   same rules as when an interface becomes an advertising interface.

Router Advertisementsに含まれた情報はシステム管理の動作で変化するかもしれません。 例えば、広告を出している接頭語の寿命は変化するかもしれなくて、新しい接頭語を言い足すことができて、ルータは、ルータ(すなわち、ルータであるのからホストに切り替わる)であることなどをやめるかもしれません。 そのような場合、ルータはマックス_INITIAL_RTR_ADVERTISEMENTS未承諾広告まで伝わるかもしれません、インタフェースが広告インタフェースになる時と同じ規則を使用して。

6.2.5.  Ceasing To Be An Advertising Interface

6.2.5. 広告インタフェースであることをやめます。

   An interface may cease to be an advertising interface, through
   actions of system management such as:

インタフェースは、広告インタフェースであることを以下などのシステム管理の動作でやめるかもしれません。

   - changing the AdvSendAdvertisements flag of an enabled interface
     from TRUE to FALSE, or

- または可能にされたインタフェースのAdvSendAdvertisements旗をTRUEからFALSEに変える。

   - administratively disabling the interface, or

- または行政上インタフェースを無効にする。

   - shutting down the system.

- システムを止めます。

   In such cases the router SHOULD transmit one or more (but not more
   than MAX_FINAL_RTR_ADVERTISEMENTS) final multicast Router
   Advertisements on the interface with a Router Lifetime field of zero.
   In the case of a router becoming a host, the system SHOULD also
   depart from the all-routers IP multicast group on all interfaces on

そのような場合ルータSHOULDはゼロのRouter Lifetime分野とのインタフェースで1(しかし、マックス_FINAL_よりRTR_ADVERTISEMENTS)最終的なマルチキャストRouter Advertisementsを伝えます。 また、ルータがホストになる場合では、システムSHOULDはすべてのインタフェースに関するオールルータIPマルチキャストグループから出発します。

Narten, Nordmark & Simpson  Standards Track                    [Page 45]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[45ページ]。

   which the router supports IP multicast (whether or not they had been
   advertising interfaces).  In addition, the host MUST insure that
   subsequent Neighbor Advertisement messages sent from the interface
   have the Router flag set to zero.

ルータはIPマルチキャスト(それらが広告インタフェースであったか否かに関係なく)をサポートします。 さらに、ホストは、インタフェースから送られたその後のNeighbor AdvertisementメッセージでRouter旗をゼロに設定するのを保障しなければなりません。

   Note that system management may disable a router's IP forwarding
   capability (i.e., changing the system from being a router to being a
   host), a step that does not necessarily imply that the router's
   interfaces stop being advertising interfaces.  In such cases,
   subsequent Router Advertisements MUST set the Router Lifetime field
   to zero.

システム管理が、ルータのIP推進が能力(すなわち、システムをルータであるのからホストに変えます)(ルータのインタフェースが、広告インタフェースであることを止めるのを必ず含意するというわけではないステップ)であると無効にするかもしれないことに注意してください。 そのような場合、その後のRouter AdvertisementsはRouter Lifetime分野をゼロに設定しなければなりません。

6.2.6.  Processing Router Solicitations

6.2.6. 処理ルータ懇願

   A host MUST silently discard any received Router Solicitation
   messages.

ホストは静かにどんな受信されたRouter Solicitationメッセージも捨てなければなりません。

   In addition to sending periodic, unsolicited advertisements, a router
   sends advertisements in response to valid solicitations received on
   an advertising interface.  A router MAY choose to unicast the
   response directly to the soliciting host's address (if the
   solicitation's source address is not the unspecified address), but
   the usual case is to multicast the response to the all-nodes group.
   In the latter case, the interface's interval timer is reset to a new
   random value, as if an unsolicited advertisement had just been sent
   (see Section 6.2.4).

周期的で、求められていない広告を送ることに加えて、ルータは広告インタフェースで受けられた有効な懇願に対応して広告を送ります。 ルータは直接請求しているホストのアドレスへの応答をユニキャストに選ぶかもしれませんが(懇願のソースアドレスが不特定のアドレスでないなら)、オールノードへの応答が分類するマルチキャストには普通のケースがあります。 後者の場合では、インタフェースのインタバルタイマは新しい無作為の値にリセットされます、まるでちょうど求められていない広告を送ったかのように(セクション6.2.4を見てください)。

   In all cases, Router Advertisements sent in response to a Router
   Solicitation MUST be delayed by a random time between 0 and
   MAX_RA_DELAY_TIME seconds. (If a single advertisement is sent in
   response to multiple solicitations, the delay is relative to the
   first solicitation.)  In addition, consecutive Router Advertisements
   sent to the all-nodes multicast address MUST be rate limited to no
   more than one advertisement every MIN_DELAY_BETWEEN_RAS seconds.

すべての場合では、無作為の時間までにRouter Solicitationに対応して送られたRouter Advertisementsを0とマックス_RA_DELAY_タイム誌秒の間遅らせなければなりません。 (複数の懇願に対応してただ一つの広告を送るなら、遅れは最初の懇願に比例しています。) さらに、連続したRouter Advertisementsはマルチキャストが1つ未満の広告に制限されたレートがあらゆるMIN_DELAYであったに違いないなら扱うオールノード_BETWEEN_RAS秒まで発信しました。

   A router might process Router Solicitations as follows:

ルータは以下のRouter Solicitationsを処理するかもしれません:

 - Upon receipt of a Router Solicitation, compute a random delay within
   the range 0 through MAX_RA_DELAY_TIME.  If the computed value
   corresponds to a time later than the time the next multicast Router
   Advertisement is scheduled to be sent, ignore the random delay and
   send the advertisement at the already-scheduled time.

- Router Solicitationを受け取り次第、マックス_RA_DELAY_タイム誌を通して範囲0の中で無作為の遅れを計算してください。 計算された値が時間より遅く時間に対応するなら、次のマルチキャストRouter Advertisementは既に予定されている時に送られて、無作為の遅れを無視して、広告を送る予定です。

 - If the router sent a multicast Router Advertisement (solicited or
   unsolicited) within the last MIN_DELAY_BETWEEN_RAS seconds, schedule
   the advertisement to be sent at a time corresponding to
   MIN_DELAY_BETWEEN_RAS plus the random value after the previous
   advertisement was sent.  This ensures that the multicast Router

- 最後のMIN_DELAY_BETWEEN_RAS秒以内の(請求されるか求められていません)のRouter Advertisement、ルータがマルチキャストを送ったなら、前の広告を送った後に広告がMIN_DELAY_BETWEEN_RASに対応する時間と無作為の値で送られる計画をしてください。 これがそれを確実にする、マルチキャストRouter

Narten, Nordmark & Simpson  Standards Track                    [Page 46]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[46ページ]。

   Advertisements are rate limited.

広告は制限されたレートです。

 - Otherwise, schedule the sending of a Router Advertisement at the time
   given by the random value.

- さもなければ、無作為の値で与えるとき、Router Advertisementの発信の計画をしてください。

   Note that a router is permitted to send multicast Router
   Advertisements more frequently than indicated by the
   MinRtrAdvInterval configuration variable so long as the more frequent
   advertisements are responses to Router Solicitations.  In all cases,
   however, unsolicited multicast advertisements MUST NOT be sent more
   frequently than indicated by MinRtrAdvInterval.

ルータが、より頻繁な広告がRouter Solicitationsへの応答である限り、MinRtrAdvInterval構成変数によって示されるより頻繁にマルチキャストRouter Advertisementsを送ることが許可されていることに注意してください。 しかしながら、すべての場合では、求められていないマルチキャスト広告をMinRtrAdvIntervalによって示されるより頻繁に送ってはいけません。

   When a router receives a Router Solicitation and the Source Address
   is not the unspecified address, it records that the source of the
   packet is a neighbor by creating or updating the Neighbor Cache
   entry.  If the solicitation contains a Source Link-Layer Address
   option, and the router has a Neighbor Cache entry for the neighbor,
   the link-layer address SHOULD be updated in the Neighbor Cache.  If a
   Neighbor Cache entry is created for the source its reachability state
   MUST be set to STALE as specified in Section 7.3.3.  If a cache entry
   already exists and is updated with a different link-layer address the
   reachability state MUST also be set to STALE.  In either case the
   entry's IsRouter flag SHOULD be set to false.

ルータがいつRouter SolicitationとSource Addressを受けるかは、不特定のアドレスでなく、それはパケットの源がNeighbor Cacheエントリーを作成するか、またはアップデートすることによって隣人であるという記録です。 懇願がSource Link-層のAddressオプションを含んでいて、ルータに隣人のためのNeighbor Cacheエントリー、アドレスSHOULDリンクレイヤがアップデートされたコネがNeighbor Cacheであったならあるなら。 Neighbor Cacheエントリーがソースに作成されるなら、セクション7.3.3における指定されるとしてのSTALEに可到達性状態を設定しなければなりません。 また、キャッシュエントリーは既に存在していて、異なったリンクレイヤアドレスでアップデートするなら、可到達性状態をSTALEに設定しなければなりません。 エントリーのどちらかのケースIsRouter旗のSHOULDでは、誤っているのに設定されてください。

   If the Source Address is the unspecified address the router MUST NOT
   create or update the Neighbor Cache entry.

Source Addressが不特定のアドレスであるなら、ルータは、Neighbor Cacheエントリーを作成してはいけませんし、またアップデートしてはいけません。

6.2.7.  Router Advertisement Consistency

6.2.7. ルータ通知の一貫性

   Routers SHOULD inspect valid Router Advertisements sent by other
   routers and verify that the routers are advertising consistent
   information on a link.  Detected inconsistencies indicate that one or
   more routers might be misconfigured and SHOULD be logged to system or
   network management.  The minimum set of information to check
   includes:

ルータSHOULDは、他のルータによって送られた有効なRouter Advertisementsを点検して、ルータがリンクの一貫した情報の広告を出していることを確かめます。 検出された矛盾が、1つ以上のルータがmisconfiguredされるかもしれないのを示す、SHOULD、システムかネットワークマネージメントに登録されてください。 チェックする最小の情報は:

 - Cur Hop Limit values (except for the unspecified value of zero).

- 野良犬Hop Limit値(ゼロの不特定の値を除いた)。

 - Values of the M or O flags.

- MかOの値は弛みます。

 - Reachable Time values (except for the unspecified value of zero).

- 届いているTime値(ゼロの不特定の値を除いた)。

 - Retrans Timer values (except for the unspecified value of zero).

- Retrans Timer値(ゼロの不特定の値を除いた)。

 - Values in the MTU options.

- MTUオプションにおける値。

 - Preferred and Valid Lifetimes for the same prefix.

- 好まれました。そして、同じ接頭語のためのValid Lifetimes。

Narten, Nordmark & Simpson  Standards Track                    [Page 47]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[47ページ]。

   Note that it is not an error for different routers to advertise
   different sets of prefixes.  Also, some routers might leave some
   fields as unspecified, i.e., with the value zero, while other routers
   specify values.  The logging of errors SHOULD be restricted to
   conflicting information that causes hosts to switch from one value to
   another with each received advertisement.

それが異なったルータのための誤りでないことに注意して、異なったセットの接頭語の広告を出してください。 また、他のルータが値を指定している間、いくつかのルータがすなわち、値ゼロで不特定であるとしていくつかの野原を出るかもしれません。 誤りSHOULDが登録されて、それぞれの受け取られていている広告に応じてホストが、ある値から別のものに切り替わる闘争情報に制限されてください。

   Any other action on reception of Router Advertisement messages by a
   router is beyond the scope of this document.

ルータによるRouter Advertisementメッセージのレセプションへのいかなる他の動作もこのドキュメントの範囲を超えています。

6.2.8.  Link-local Address Change

6.2.8. リンクローカルアドレス変化

   The link-local address on a router SHOULD change rarely, if ever.
   Nodes receiving Neighbor Discovery messages use the source address to
   identify the sender.  If multiple packets from the same router
   contain different source addresses, nodes will assume they come from
   different routers, leading to undesirable behavior.  For example, a
   node will ignore Redirect messages that are believed to have been
   sent by a router other than the current first-hop router.  Thus the
   source address used in Router Advertisements sent by a particular
   router must be identical to the target address in a Redirect message
   when redirecting to that router.

ルータのリンクローカルアドレスSHOULDはめったに変化しません、かつてなら。Neighborディスカバリーメッセージを受け取るノードは、送付者を特定するのにソースアドレスを使用します。 同じルータからの複数のパケットが異なったソースアドレスを含んでいると、ノードは、異なったルータから来ると仮定するでしょう、好ましくない行動に通じて。 例えば、ノードは現在の最初に、ホップルータ以外のルータによって送られたと信じられているRedirectメッセージを無視するでしょう。 そのルータに向け直すとき、したがって、特定のルータによって送られたRouter Advertisementsで使用されるソースアドレスはRedirectメッセージのあて先アドレスと同じであるに違いありません。

   Using the link-local address to uniquely identify routers on the link
   has the benefit that the address a router is known by should not
   change when a site renumbers.

サイトであるときに、リンクの上に唯一ルータを特定するのにリンクローカルアドレスを使用するのにおいて、変化ではなく、ルータが知られているアドレスがそうするべきである利益があります。番号を付け替えます。

   If a router changes the link-local address for one of its interfaces,
   it SHOULD inform hosts of this change.  The router SHOULD multicast a
   few Router Advertisements from the old link-local address with the
   Router Lifetime field set to zero and also multicast a few Router
   Advertisements from the new link-local address.  The overall effect
   should be the same as if one interface ceases being an advertising
   interface, and a different one starts being an advertising interface.

ルータはリンクローカルアドレスをインタフェースの1つに変えて、それはSHOULDです。この変化についてホストに知らせてください。 Router Lifetimeがある古いリンクローカルアドレスからのいくつかのRouter AdvertisementsがさばくルータSHOULDマルチキャストは新しいリンクローカルアドレスからゼロとマルチキャストにもいくつかのRouter Advertisementsを設定しました。 まるで1つのインタフェースが、広告インタフェースであることをやめるかのように総合的な効果は同じであるべきです、そして、異なったものは広告インタフェースであり始めます。

6.3.  Host Specification

6.3. ホスト仕様

6.3.1.  Host Configuration Variables

6.3.1. ホスト構成変数

   None.

なし。

6.3.2.  Host Variables

6.3.2. ホスト変数

   A host maintains certain Neighbor Discovery related variables in
   addition to the data structures defined in Section 5.1.  The specific
   variable names are used for demonstration purposes only, and an
   implementation is not required to have them, so long as its external
   behavior is consistent with that described in this document.

ホストはセクション5.1で定義されたデータ構造に加えてあるNeighborディスカバリー関連変数を維持します。 特定の変数名はデモンストレーションの目的だけに使用されます、そして、実装はそれらを持つのに必要ではありません、外部の振舞いが本書では説明されるそれと一致している限り。

Narten, Nordmark & Simpson  Standards Track                    [Page 48]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[48ページ]。

   These variables have default values that are overridden by
   information received in Router Advertisement messages.  The default
   values are used when there is no router on the link or when all
   received Router Advertisements have left a particular value
   unspecified.

これらの変数には、Router Advertisementメッセージに受け取られた情報によってくつがえされるデフォルト値があります。 リンクの上にルータが全くないか、またはすべての容認されたRouter Advertisementsが特定の値を不特定のままにしたとき、デフォルト値は使用されています。

   The default values in this specification may be overridden by
   specific documents that describe how IP operates over different link
   layers.  This rule allows Neighbor Discovery to operate over links
   with widely varying performance characteristics.

この仕様によるデフォルト値はIPが異なったリンクレイヤの上でどう作動するかを説明する特定のドキュメントによってくつがえされるかもしれません。 この規則で、Neighborディスカバリーは広く性能の特性を変えるとのリンクの上に作動します。

   For each interface:

それぞれに関しては、連結してください:

     LinkMTU        The MTU of the link.

リンクのLinkMTU MTU。

                    Default: The valued defined in the specific document
                    that describes how IPv6 operates over the particular
                    link layer (e.g., [IPv6-ETHER]).

デフォルト: IPv6が特定のリンクレイヤ(例えば、[IPv6-ETHER])の上でどう作動するかを説明する特定のドキュメントで定義された評価。

     CurHopLimit    The default hop limit to be used when sending
                    (unicast) IP packets.

CurHopLimit、(ユニキャスト)IPパケットを送るとき使用されるべきデフォルトホップ限界。

                    Default: The value specified in the "Assigned
                    Numbers" RFC [ASSIGNED] that was in effect at the
                    time of implementation.

デフォルト: 値は実装時点で有効であった「規定番号」RFC[ASSIGNED]で指定しました。

     BaseReachableTime
                    A base value used for computing the random
                    ReachableTime value.

BaseReachableTime A基礎点はコンピューティングに無作為のReachableTime値を使用しました。

                    Default: REACHABLE_TIME milliseconds.

デフォルト: REACHABLE_タイム誌のミリセカンド。

     ReachableTime  The time a neighbor is considered reachable after
                    receiving a reachability confirmation.

可到達性確認を受け取った後に、時間a隣人のReachableTimeは届くと考えられます。

                    This value should be a uniformly-distributed random
                    value between MIN_RANDOM_FACTOR and
                    MAX_RANDOM_FACTOR times BaseReachableTime
                    milliseconds.  A new random value should be
                    calculated when BaseReachableTime changes (due to
                    Router Advertisements) or at least every few hours
                    even if no Router Advertisements are received.

この値はMIN_RANDOM_FACTORとマックス_RANDOM_FACTOR回のBaseReachableTimeミリセカンドの間の一様に分散している無作為の値であるべきです。 BaseReachableTimeが変化すると(Router Advertisementsのため)新しい無作為の値が計算されているべきである、少なくともあらゆる数時間、どんなRouter Advertisementsも受け取られていないでも。

     RetransTimer   The time between retransmissions of Neighbor
                    Solicitation messages to a neighbor when resolving
                    the address or when probing the reachability of a
                    neighbor.

隣人の可到達性を調べながらアドレスかいつを決議するかときNeighbor Solicitationの「再-トランスミッション」の間の時間が隣人へ通信させるRetransTimer。

Narten, Nordmark & Simpson  Standards Track                    [Page 49]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[49ページ]。

                    Default: RETRANS_TIMER milliseconds

デフォルト: RETRANS_TIMERミリセカンド

6.3.3.  Interface Initialization

6.3.3. インタフェース初期設定

   The host joins the all-nodes multicast address on all multicast-
   capable interfaces.

ホストはすべてのマルチキャストのできるインタフェースに関するオールノードマルチキャストアドレスに加わります。

6.3.4.  Processing Received Router Advertisements

6.3.4. 処理はルータ通知を受け取りました。

   When multiple routers are present, the information advertised
   collectively by all routers may be a superset of the information
   contained in a single Router Advertisement.  Moreover, information
   may also be obtained through other dynamic means, such as stateful
   autoconfiguration.  Hosts accept the union of all received
   information; the receipt of a Router Advertisement MUST NOT
   invalidate all information received in a previous advertisement or
   from another source.  However, when received information for a
   specific parameter (e.g., Link MTU) or option (e.g., Lifetime on a
   specific Prefix) differs from information received earlier, and the
   parameter/option can only have one value, the most recently-received
   information is considered authoritative.

複数のルータが存在しているとき、すべてのルータによってまとめて広告に掲載された情報は独身のRouter Advertisementに含まれた情報のスーパーセットであるかもしれません。 そのうえ、また、stateful自動構成などの他のダイナミックな手段で情報を得るかもしれません。 ホストはすべての受信された情報の組合を受け入れます。 Router Advertisementの領収書は前の広告か別のソースから受け取られたすべての情報を無効にしてはいけません。 しかしながら、特定のパラメタ(例えば、Link MTU)かオプション(例えば、特定のPrefixの上のLifetime)のための受信された情報が、より早く受け取られた情報と異なっていて、パラメタ/オプションが1つの値しか持つことができないなら、最も多くの最近受信された情報が正式であると考えられます。

   Some Router Advertisement fields (e.g., Cur Hop Limit, Reachable Time
   and Retrans Timer) may contain a value denoting unspecified.  In such
   cases, the parameter should be ignored and the host should continue
   using whatever value it is already using.  In particular, a host MUST
   NOT interpret the unspecified value as meaning change back to the
   default value that was in use before the first Router Advertisement
   was received.  This rule prevents hosts from continually changing an
   internal variable when one router advertises a specific value, but
   other routers advertise the unspecified value.

いくつかのRouter Advertisement分野(例えば、Cur Hop Limit、Reachable Time、およびRetrans Timer)が不特定の状態で指示される値を含むかもしれません。 そのような場合、パラメタは無視されるべきです、そして、ホストはそれが既に使用しているどんな値も使用し続けるべきです。 最初のRouter Advertisementを受け取る前に使用中であったデフォルト値に変わって戻ることを意味すると特に、ホストは不特定の値を解釈してはいけません。 この規則によって、1つのルータが特定の値の広告を出すとき、ホストは絶えず内部の変数を変えることができませんが、他のルータは不特定の値の広告を出します。

   On receipt of a valid Router Advertisement, a host extracts the
   source address of the packet and does the following:

有効なRouter Advertisementを受け取り次第、ホストは、パケットのソースアドレスを抜粋して、以下をします:

   - If the address is not already present in the host's Default Router
     List, and the advertisement's Router Lifetime is non-zero, create a
     new entry in the list, and initialize its invalidation timer value
     from the advertisement's Router Lifetime field.

- アドレスがホストのDefault Router Listに既に存在していなくて、広告のRouter Lifetimeが非ゼロであるなら、リストにおける新しいエントリーを作成してください、そして、広告のRouter Lifetime分野から無効にするタイマ価値を初期化してください。

   - If the address is already present in the host's Default Router List
     as a result of a previously-received advertisement, reset its
     invalidation timer to the Router Lifetime value in the newly-
     received advertisement.

- アドレスが以前に受け取られていている広告の結果、ホストのDefault Router Listに既に存在しているなら、新たに受け取られた広告におけるRouter Lifetime値に無効にするタイマをリセットしてください。

   - If the address is already present in the host's Default Router List
     and the received Router Lifetime value is zero, immediately time-
     out the entry as specified in Section 6.3.5.

- アドレスがホストのDefault Router Listに既に存在していて、容認されたRouter Lifetime値がゼロであるなら、至急、セクション6.3.5における指定されるとしてのエントリーから調節してください。

Narten, Nordmark & Simpson  Standards Track                    [Page 50]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[50ページ]。

   To limit the storage needed for the Default Router List, a host MAY
   choose not to store all of the router addresses discovered via
   advertisements.  However, a host MUST retain at least two router
   addresses and SHOULD retain more.  Default router selections are made
   whenever communication to a destination appears to be failing.  Thus,
   the more routers on the list, the more likely an alternative working
   router can be found quickly (e.g., without having to wait for the
   next advertisement to arrive).

Default Router Listに必要であるストレージを制限するために、ホストは、広告で発見されたルータアドレスのすべてを保存しないのを選ぶかもしれません。 しかしながら、ホストはアドレスとSHOULDがさらに保有する少なくとも2ルータを保有しなければなりません。 目的地へのコミュニケーションが失敗しているように見えるときはいつも、デフォルトルータ選択をします。 したがって、リストの上の、より多くのルータであり、すぐに(例えば、次の広告が到着するのを待つ必要はなくて)働くルータを見つけることができる代替手段は、よりありそうです。

   If the received Cur Hop Limit value is non-zero the host SHOULD set
   its CurHopLimit variable to the received value.

容認されたCur Hop Limit値が非ゼロであるなら、ホストSHOULDは容認された値にCurHopLimit変数を設定します。

   If the received Reachable Time value is non-zero the host SHOULD set
   its BaseReachableTime variable to the received value.  If the new
   value differs from the previous value, the host SHOULD recompute a
   new random ReachableTime value.  ReachableTime is computed as a
   uniformly-distributed random value between MIN_RANDOM_FACTOR and
   MAX_RANDOM_FACTOR times the BaseReachableTime.  Using a random
   component eliminates the possibility Neighbor Unreachability
   Detection messages synchronize with each other.

容認されたReachable Time値が非ゼロであるなら、ホストSHOULDは容認された値にBaseReachableTime変数を設定します。 新しい値が前の値と異なっているなら、新しい無作為のReachableTimeが評価するホストSHOULD recomputeです。 ReachableTimeはMIN_RANDOM_FACTORの間の一様に分散している無作為の値として計算されます、そして、BaseReachableTimeはマックス_RANDOM_FACTOR回数が計算されます。 無作為のコンポーネントを使用すると、Neighbor Unreachability Detectionメッセージが互いと同期する可能性は排除されます。

   In most cases, the advertised Reachable Time value will be the same
   in consecutive Router Advertisements and a host's BaseReachableTime
   rarely changes.  In such cases, an implementation SHOULD insure that
   a new random value gets recomputed at least once every few hours.

多くの場合、広告を出しているReachable Time値は連続したRouter Advertisementsで同じになるでしょう、そして、ホストのBaseReachableTimeはめったに変化しません。 そのような場合、SHOULDが保障する実装では、新しい無作為の値が得られるのはあらゆる数時間単位で少なくとも一度再計算されました。

   The RetransTimer variable SHOULD be copied from the Retrans Timer
   field, if the received value is non-zero.

RetransTimerの可変SHOULD、Retrans Timer分野から、容認された値が非ゼロであるならコピーされてください。

   After extracting information from the fixed part of the Router
   Advertisement message, the advertisement is scanned for valid
   options.  If the advertisement contains a Source Link-Layer Address
   option the link-layer address SHOULD be recorded in the Neighbor
   Cache entry for the router (creating an entry if necessary) and the
   IsRouter flag in the Neighbor Cache entry MUST be set to true.  The
   IsRouter flag is used by Neighbor Unreachability Detection to
   determine when a router changes to being a host (i.e., no longer
   capable of forwarding packets).  If a Neighbor Cache entry is created
   for the router its reachability state MUST be set to STALE as
   specified in Section 7.3.3.  If a cache entry already exists and is
   updated with a different link-layer address the reachability state
   MUST also be set to STALE.

Router Advertisementメッセージの固定部分から情報を抜粋した後に、広告は妥当な選択肢のためにスキャンされます。 広告がリンクレイヤがSHOULDを扱うSource Link-層のAddressオプションを含むなら、本当に(必要なら、エントリーを作成します)、Neighbor CacheエントリーにおけるIsRouter旗を設定しなければならないルータのためのNeighbor Cacheエントリーに記録されてください。 IsRouter旗は、ルータがいつホスト(すなわち、もう推進パケットができない)に変化するかを決定するのにNeighbor Unreachability Detectionによって使用されます。 Neighbor Cacheエントリーがルータのために作成されるなら、セクション7.3.3における指定されるとしてのSTALEに可到達性状態を設定しなければなりません。 また、キャッシュエントリーは既に存在していて、異なったリンクレイヤアドレスでアップデートするなら、可到達性状態をSTALEに設定しなければなりません。

   If the MTU option is present, hosts SHOULD copy the option's value
   into LinkMTU if the value does not exceed the default LinkMTU value
   specified in the link type specific document (e.g., [IPv6-ETHER]).

MTUオプションが存在していて、値がリンク型の特定のドキュメント(例えば、[IPv6-ETHER])で指定されたデフォルトLinkMTU価値を超えていないなら、ホストSHOULDはオプションの値をLinkMTUにコピーします。

Narten, Nordmark & Simpson  Standards Track                    [Page 51]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[51ページ]。

   Prefix Information options that have the "on-link" (L) flag set
   indicate a prefix identifying a range of addresses that should be
   considered on-link.  Note, however, that a Prefix Information option
   with the on-link flag set to zero conveys no information concerning
   on-link determination and MUST NOT be interpreted to mean that
   addresses covered by the prefix are off-link.  The default behavior
   (see Section 5.2) when no information is known about an address is to
   send the packets to a default router and the reception of a Prefix
   Information option with the "on-link " (L) flag set to zero does not
   change this behavior.  The reasons for an address being treated as
   on-link is specified in the definition of "on-link" in Section 2.1.
   Prefixes with the on-link flag set to zero would normally have the
   autonomous flag set and be used by [ADDRCONF].

「リンク」の(L)旗を設定する接頭語情報オプションはリンクであると考えられるべきであるさまざまなアドレスを特定する接頭語を示します。 しかしながら、リンクの上の旗がゼロに設定されていたPrefix情報オプションがリンクにおける決断に関して情報を全く伝えないで、接頭語でカバーされたアドレスがオフリンクであることを意味するために解釈されてはいけないことに注意してください。 デフォルトの振舞い(セクション5.2を見る)が情報が全くアドレスに関して知られていないとデフォルトルータにパケットを送ることであり、「リンク」の(L)旗がゼロに設定されていたPrefix情報オプションのレセプションはこの振舞いを変えません。 オンリンクがセクション2.1との「リンク」の定義で指定されるので扱われるアドレスの理由。 リンクの上の旗がゼロに設定されていた接頭語は、通常、自動旗を設定させて、[ADDRCONF]によって使用されるでしょう。

   For each Prefix Information option with the on-link flag set, a host
   does the following:

リンクの上に旗のセットがあるそれぞれのPrefix情報オプションのために、ホストは以下をします:

   - If the prefix is the link-local prefix, silently ignore the Prefix
     Information option.

- 接頭語がリンクローカルの接頭語であるなら、静かにPrefix情報オプションを無視してください。

   - If the prefix is not already present in the Prefix List, and the
     Prefix Information option's Valid Lifetime field is non-zero,
     create a new entry for the prefix and initialize its invalidation
     timer to the Valid Lifetime value in the Prefix Information option.

- 接頭語がPrefix Listに既に存在していなくて、Prefix情報オプションのValid Lifetime分野が非ゼロであるなら、接頭語のための新しいエントリーを作成してください、そして、Prefix情報オプションにおけるValid Lifetime値に無効にするタイマを初期化してください。

   - If the prefix is already present in the host's Prefix List as the
     result of a previously-received advertisement, reset its
     invalidation timer to the Valid Lifetime value in the Prefix
     Information option.  If the new Lifetime value is zero, time-out
     the prefix immediately (see Section 6.3.5).

- 接頭語が以前に受け取られていている広告の結果としてホストのPrefix Listに既に存在しているなら、Prefix情報オプションにおけるValid Lifetime値に無効にするタイマをリセットしてください。 新しいLifetime値であるなら、すぐに、ゼロ、タイムアウトは接頭語(セクション6.3.5を見る)ですか?

   - If the Prefix Information option's Valid Lifetime field is zero,
     and the prefix is not present in the host's Prefix List, silently
     ignore the option.

- Prefix情報オプションのValid Lifetime分野がゼロであり、接頭語がホストのPrefix Listに存在していないなら、静かにオプションを無視してください。

   Note: Implementations can choose to process the on-link aspects of
   the prefixes separately from the address autoconfiguration aspects of
   the prefixes by, e.g., passing a copy of each valid Router
   Advertisement message to both an "on-link" and an "addrconf"
   function.  Each function can then operate independently on the
   prefixes that have the appropriate flag set.

以下に注意してください。 実現は、別々に接頭語のアドレス自動構成局面からリンクの接頭語の局面を処理するのを選ぶことができます、例えば、それぞれの有効なRouter Advertisementメッセージのコピーを両方に渡して、「オンリンク」と"addrconf"は機能します。 そして、各機能は適切なフラグを設定する接頭語を独自に作動させることができます。

6.3.5.  Timing out Prefixes and Default Routers

6.3.5. タイミングアウト接頭語とデフォルトルータ

   Whenever the invalidation timer expires for a Prefix List entry, that
   entry is discarded.  No existing Destination Cache entries need be
   updated, however.  Should a reachability problem arise with an
   existing Neighbor Cache entry, Neighbor Unreachability Detection will

無効にするタイマが期限が切れるときはいつも、Prefix Listに関して、エントリー、そのエントリーは捨てられます。 しかしながら、いいえ存在Destination Cacheエントリーをアップデートしなければなりません。可到達性問題が既存のNeighbor Cacheエントリーで起こると、Neighbor Unreachability Detectionは起こるでしょう。

Narten, Nordmark & Simpson  Standards Track                    [Page 52]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[52ページ]。

   perform any needed recovery.

あらゆる必要な回復を実行してください。

   Whenever the Lifetime of an entry in the Default Router List expires,
   that entry is discarded.  When removing a router from the Default
   Router list, the node MUST update the Destination Cache in such a way
   that all entries using the router perform next-hop determination
   again rather than continue sending traffic to the (deleted) router.

Default Router ListのエントリーのLifetimeが期限が切れるときはいつも、そのエントリーは捨てられます。 Default Routerリストからルータを取り除くとき、ノードは(削除されます)ルータに交通を送り続けているよりルータを使用するすべてのエントリーが再びむしろ次のホップ決断を実行するような方法でDestination Cacheをアップデートしなければなりません。

6.3.6.  Default Router Selection

6.3.6. デフォルトルータ選択

   The algorithm for selecting a router depends in part on whether or
   not a router is known to be reachable.  The exact details of how a
   node keeps track of a neighbor's reachability state are covered in
   Section 7.3.  The algorithm for selecting a default router is invoked
   during next-hop determination when no Destination Cache entry exists
   for an off-link destination or when communication through an existing
   router appears to be failing.  Under normal conditions, a router
   would be selected the first time traffic is sent to a destination,
   with subsequent traffic for that destination using the same router as
   indicated in the Destination Cache modulo any changes to the
   Destination Cache caused by Redirect messages.

ルータを選択するためのアルゴリズムはルータが届くのが知られているかどうかに一部よります。 ノードがどう隣人の可到達性状態の動向をおさえるかに関する正確な詳細はセクション7.3でカバーされています。 デフォルトルータを選択するためのアルゴリズムはDestination Cacheエントリーが全くオフリンクの目的地に存在しないときの次のホップ決断か既存のルータを通したコミュニケーションが失敗しているように見えるときに時呼び出されます。 正常な状況では、ルータは選択されて、初めての交通を目的地に送ります、同じルータをDestination Cacheへのどんな変化もRedirectメッセージで引き起こしたDestination Cache法にみられるようにその目的地のためのその後の交通による使用でことでしょう。

   The policy for selecting routers from the Default Router List is as
   follows:

Default Router Listからルータを選択するための方針は以下の通りです:

  1) Routers that are reachable or probably reachable (i.e., in any
     state other than INCOMPLETE) SHOULD be preferred over routers whose
     reachability is unknown or suspect (i.e., in the INCOMPLETE state,
     or for which no Neighbor Cache entry exists).  An implementation
     may choose to always return the same router or cycle through the
     router list in a round-robin fashion as long as it always returns a
     reachable or a probably reachable router when one is available.

1) 届いているか、またはたぶん届いている(すなわち、INCOMPLETE以外のどんな状態のも)ルータ SHOULDは可到達性が未知であるルータより好まれるか、または(すなわち、INCOMPLETEが述べるか、またはNeighbor Cacheエントリーが全く存在しないコネ)を疑います。 または、実現が、いつも同じルータを返すか、またはそれとしての長い同じくらいファッションがいつも返す連続aで届いているルータリストを通して循環するのを選ぶかもしれない、たぶん届いているルータ、1つが利用可能であるときに。

  2) When no routers on the list are known to be reachable or probably
     reachable, routers SHOULD be selected in a round-robin fashion, so
     that subsequent requests for a default router do not return the
     same router until all other routers have been selected.

2) 届くか、またはリストの上のルータが全くたぶん届くのが知られない場合、ルータSHOULDが連続ファッションで選択されて、したがって、他のすべてのルータが選択されるまで、デフォルトルータを求めるそのその後の要求は同じルータを返しません。

     Cycling through the router list in this case ensures that all
     available routers are actively probed by the Neighbor
     Unreachability Detection algorithm.  A request for a default router
     is made in conjunction with the sending of a packet to a router,
     and the selected router will be probed for reachability as a side
     effect.

ルータリストを通して循環するのは、この場合すべての利用可能なルータがNeighbor Unreachability Detectionアルゴリズムで活発に調べられるのを確実にします。 ルータへのパケットの送付に関連してデフォルトルータを求める要求をします、そして、可到達性のために副作用として選択されたルータを調べるでしょう。

  3) If the Default Router List is empty, assume that all destinations
     are on-link as specified in Section 5.2.

3) Default Router Listが空であるなら、すべての目的地がセクション5.2で指定されるようにリンクであると仮定してください。

Narten, Nordmark & Simpson  Standards Track                    [Page 53]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[53ページ]。

6.3.7.  Sending Router Solicitations

6.3.7. 送付ルータ懇願

   When an interface becomes enabled, a host may be unwilling to wait
   for the next unsolicited Router Advertisement to locate default
   routers or learn prefixes.  To obtain Router Advertisements quickly,
   a host SHOULD transmit up to MAX_RTR_SOLICITATIONS Router
   Solicitation messages each separated by at least
   RTR_SOLICITATION_INTERVAL seconds.  Router Solicitations may be sent
   after any of the following events:

インタフェースが可能にされるようになるとき、ホストは、次の求められていないRouter Advertisementがデフォルトルータの場所を見つけるか、または接頭語を学ぶのを待ちたがっていないかもしれません。 すぐにRouter Advertisementsを入手するために、SHOULDがマックス_RTR_SOLICITATIONS Router Solicitationメッセージまで伝えるホストは少なくともRTR_SOLICITATION_INTERVAL秒までにそれぞれ分離しました。 以下の出来事のどれかの後にルータSolicitationsを送るかもしれません:

   - The interface is initialized at system startup time.

- インタフェースはシステム起動時に初期化されます。

   - The interface is reinitialized after a temporary interface failure
     or after being temporarily disabled by system management.

- インタフェースは一時的なインタフェース失敗の後かシステム管理で一時無能にされた後に、再初期化されます。

   - The system changes from being a router to being a host, by having
     its IP forwarding capability turned off by system management.

- システムはルータであるのからホストに変化します、システム管理でIP推進能力をオフにさせることによって。

   - The host attaches to a link for the first time.

- ホストは初めて、リンクに付きます。

   - The host re-attaches to a link after being detached for some time.

- ホストはしばらく取り外された後に、リンクに再付きます。

   A host sends Router Solicitations to the all-routers multicast
   address.  The IP source address is set to either one of the
   interface's unicast addresses or the unspecified address.  The Source
   Link-Layer Address option SHOULD be set to the host's link-layer
   address, if the IP source address is a unicast address.

ホストはオールルータマルチキャストアドレスにRouter Solicitationsを送ります。 IPソースアドレスはインタフェースのユニキャストアドレスか不特定のアドレスのどちらかに設定されます。 Address Source Link-層のオプションSHOULDがホストのリンクレイヤアドレスに用意ができていて、IPであるなら、ソースアドレスはユニキャストアドレスです。

   Before a host sends an initial solicitation, it SHOULD delay the
   transmission for a random amount of time between 0 and
   MAX_RTR_SOLICITATION_DELAY.  This serves to alleviate congestion when
   many hosts start up on a link at the same time, such as might happen
   after recovery from a power failure.  If a host has already performed
   a random delay since the interface became (re)enabled (e.g., as part
   of Duplicate Address Detection [ADDRCONF]) there is no need to delay
   again before sending the first Router Solicitation message.

ホストの前では、初期の懇願は発信していて、それはSHOULD遅れです。0とマックス_RTR_SOLICITATION_DELAYの間の無作為の時間のトランスミッション。 これは、多くのホストが同時にリンクで始動するときの混雑を軽減するのに役立ちます。(混雑は停電からの回復の後に起こるかもしれません)。 インタフェースが可能にされるようになって以来(re)(例えば、Duplicate Address Detection[ADDRCONF]の一部として)ホストが既に無作為の遅れを実行しているなら、最初のRouter Solicitationメッセージを送る前に再び延着する必要は全くありません。

   Once the host sends a Router Solicitation, and receives a valid
   Router Advertisement with a non-zero Router Lifetime, the host MUST
   desist from sending additional solicitations on that interface, until
   the next time one of the above events occurs.  Moreover, a host
   SHOULD send at least one solicitation in the case where an
   advertisement is received prior to having sent a solicitation.
   Unsolicited Router Advertisements may be incomplete (see Section
   6.2.3); solicited advertisements are expected to contain complete
   information.

ホストが非ゼロRouter Lifetimeと共にいったんRouter Solicitationを送って、有効なRouter Advertisementを受け取ると、ホストはそのインタフェースで送付の追加懇願からやめなければなりません、上の出来事の次回1が起こるまで。 そのうえ、SHOULDが場合で少なくとも1つの懇願を送るホストは有の前に広告を受け取るところで懇願を送りました。 求められていないRouter Advertisementsは不完全であるかもしれません(セクション6.2.3を見てください)。 請求された広告が完全な情報を含むと予想されます。

Narten, Nordmark & Simpson  Standards Track                    [Page 54]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[54ページ]。

   If a host sends MAX_RTR_SOLICITATIONS solicitations, and receives no
   Router Advertisements after having waited MAX_RTR_SOLICITATION_DELAY
   seconds after sending the last solicitation, the host concludes that
   there are no routers on the link for the purpose of [ADDRCONF].
   However, the host continues to receive and process Router
   Advertisements messages in the event that routers appear on the link.

ホストがマックス_RTR_SOLICITATION_DELAY秒に_RTR_SOLICITATIONS懇願を最後の懇願をマックスに送って、次々と待った後のRouter Advertisementsを全く受け取らないなら、ホストは、[ADDRCONF]の目的のためのリンクの上にルータが全くないと結論を下します。 しかしながら、ルータがリンクの上に現れる場合、ホストは、Router Advertisementsメッセージを受け取って、処理し続けています。

7.  ADDRESS RESOLUTION AND NEIGHBOR UNREACHABILITY DETECTION

7. アドレス解決AND隣人UNREACHABILITY検出

   This section describes the functions related to Neighbor Solicitation
   and Neighbor Advertisement messages and includes descriptions of
   address resolution and the Neighbor Unreachability Detection
   algorithm.

このセクションは、Neighbor SolicitationとNeighbor Advertisementメッセージに関連する機能について説明して、アドレス解決とNeighbor Unreachability Detectionアルゴリズムの記述を含んでいます。

   Neighbor Solicitation and Advertisement messages are also used for
   Duplicate Address Detection as specified by [ADDRCONF].  In
   particular, Duplicate Address Detection sends Neighbor Solicitation
   messages with an unspecified source address targeting its own
   "tentative" address.  Such messages trigger nodes already using the
   address to respond with a multicast Neighbor Advertisement indicating
   that the address is in use.

また、[ADDRCONF]によって指定されるように隣人SolicitationとAdvertisementメッセージはDuplicate Address Detectionに使用されます。 特に、Duplicate Address Detectionは不特定のソースアドレスがそれ自身の「一時的な」アドレスを狙っているメッセージをNeighbor Solicitationに送ります。 そのようなメッセージは、アドレスが使用中であるマルチキャストNeighbor Advertisement表示で応じるのに既にアドレスを使用することでノードの引き金となります。

7.1.  Message Validation

7.1. メッセージ合法化

7.1.1.  Validation of Neighbor Solicitations

7.1.1. 隣人懇願の合法化

   A node MUST silently discard any received Neighbor Solicitation
   messages that do not satisfy all of the following validity checks:

ノードは静かに以下のバリディティチェックのすべてを満たさないどんな受信されたNeighbor Solicitationメッセージも捨てなければなりません:

   - The IP Hop Limit field has a value of 255, i.e., the packet could
     not possibly have been forwarded by a router.

- IP Hop Limit分野には、255の値があります、すなわち、ルータはパケットを進めることができませんでした。

   - If the message includes an IP Authentication Header, the message
     authenticates correctly.

- メッセージはIP Authentication Header、メッセージを含んでいます。正しく、認証します。

   - ICMP Checksum is valid.

- ICMP Checksumは有効です。

   - ICMP Code is 0.

- ICMP Codeは0歳です。

   - ICMP length (derived from the IP length) is 24 or more octets.

- ICMPの長さ(IPの長さから、派生する)は24以上の八重奏です。

   - Target Address is not a multicast address.

- 目標Addressはマルチキャストアドレスではありません。

   - All included options have a length that is greater than zero.

- すべての含まれているオプションには、ゼロ以上である長さがあります。

   The contents of the Reserved field, and of any unrecognized options,
   MUST be ignored.  Future, backward-compatible changes to the protocol
   may specify the contents of the Reserved field or add new options;

Reserved分野、およびどんな認識されていないオプションのコンテンツも無視しなければなりません。 プロトコルへの将来的で、後方コンパチブル変化は、Reserved分野のコンテンツを指定するか、または新しいオプションを加えるかもしれません。

Narten, Nordmark & Simpson  Standards Track                    [Page 55]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[55ページ]。

   backward-incompatible changes may use different Code values.

後方の非互換な変化は異なったCode値を使用するかもしれません。

   The contents of any defined options that are not specified to be used
   with Neighbor Solicitation messages MUST be ignored and the packet
   processed as normal.  The only defined option that may appear is the
   Source Link-Layer Address option.

Neighbor Solicitationメッセージと共に使用されるために指定されない少しの定義されたオプションのコンテンツも無視しなければなりませんでした、そして、パケットは標準として処理されました。 現れるかもしれない唯一の定義されたオプションがSource Link-層のAddressオプションです。

   A Neighbor Solicitation that passes the validity checks is called a
   "valid solicitation".

バリディティチェックを通過するNeighbor Solicitationは「有効な懇願」と呼ばれます。

7.1.2.  Validation of Neighbor Advertisements

7.1.2. 隣人広告の合法化

   A node MUST silently discard any received Neighbor Advertisement
   messages that do not satisfy all of the following validity checks:

ノードは静かに以下のバリディティチェックのすべてを満たさないどんな受信されたNeighbor Advertisementメッセージも捨てなければなりません:

   - The IP Hop Limit field has a value of 255, i.e., the packet could
     not possibly have been forwarded by a router.

- IP Hop Limit分野には、255の値があります、すなわち、ルータはパケットを進めることができませんでした。

   - If the message includes an IP Authentication Header, the message
     authenticates correctly.

- メッセージはIP Authentication Header、メッセージを含んでいます。正しく、認証します。

   - ICMP Checksum is valid.

- ICMP Checksumは有効です。

   - ICMP Code is 0.

- ICMP Codeは0歳です。

   - ICMP length (derived from the IP length) is 24 or more octets.

- ICMPの長さ(IPの長さから、派生する)は24以上の八重奏です。

   - Target Address is not a multicast address.

- 目標Addressはマルチキャストアドレスではありません。

   - If the IP Destination Address is a multicast address the Solicited
     flag is zero.

- IP Destination Addressがマルチキャストアドレスであるなら、Solicited旗はゼロです。

   - All included options have a length that is greater than zero.

- すべての含まれているオプションには、ゼロ以上である長さがあります。

   The contents of the Reserved field, and of any unrecognized options,
   MUST be ignored.  Future, backward-compatible changes to the protocol
   may specify the contents of the Reserved field or add new options;
   backward-incompatible changes may use different Code values.

Reserved分野、およびどんな認識されていないオプションのコンテンツも無視しなければなりません。 プロトコルへの将来的で、後方コンパチブル変化は、Reserved分野のコンテンツを指定するか、または新しいオプションを加えるかもしれません。 後方の非互換な変化は異なったCode値を使用するかもしれません。

   The contents of any defined options that are not specified to be used
   with Neighbor Advertisement messages MUST be ignored and the packet
   processed as normal.  The only defined option that may appear is the
   Target Link-Layer Address option.

Neighbor Advertisementメッセージと共に使用されるために指定されない少しの定義されたオプションのコンテンツも無視しなければなりませんでした、そして、パケットは標準として処理されました。 現れるかもしれない唯一の定義されたオプションがTarget Link-層のAddressオプションです。

   A Neighbor Advertisements that passes the validity checks is called a
   "valid advertisement".

バリディティチェックを通過するNeighbor Advertisementsは「有効な広告」と呼ばれます。

Narten, Nordmark & Simpson  Standards Track                    [Page 56]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[56ページ]。

7.2.  Address Resolution

7.2. アドレス解決

   Address resolution is the process through which a node determines the
   link-layer address of a neighbor given only its IP address.  Address
   resolution is performed only on addresses that are determined to be
   on-link and for which the sender does not know the corresponding
   link-layer address.  Address resolution is never performed on
   multicast addresses.

アドレス解決はIPアドレスだけを考えて、ノードが隣人のリンクレイヤアドレスを決定する過程です。 アドレス解決はリンクであると決心していて、送付者が対応するリンクレイヤアドレスを知らないアドレスだけに実行されます。 アドレス解決はマルチキャストアドレスに決して実行されません。

7.2.1.  Interface Initialization

7.2.1. インタフェース初期設定

   When a multicast-capable interface becomes enabled the node MUST join
   the all-nodes multicast address on that interface, as well as the
   solicited-node multicast address corresponding to each of the IP
   addresses assigned to the interface.

マルチキャストできるインタフェースが可能にされるようになると、ノードはそのインタフェースに関するオールノードマルチキャストアドレスを接合しなければなりません、インタフェースに割り当てられたそれぞれのIPアドレスに対応する請求されたノードマルチキャストアドレスと同様に。

   The set of addresses assigned to an interface may change over time.
   New addresses might be added and old addresses might be removed
   [ADDRCONF].  In such cases the node MUST join and leave the
   solicited-node multicast address corresponding to the new and old
   addresses, respectively.  Note that multiple unicast addresses may
   map into the same solicited-node multicast address; a node MUST NOT
   leave the solicited-node multicast group until all assigned addresses
   corresponding to that multicast address have been removed.

インタフェースに割り当てられたアドレスのセットは時間がたつにつれて、変化するかもしれません。 新しいアドレスを加えるかもしれません、そして、旧住所を取り除くかもしれません[ADDRCONF]。 そのような場合ノードは、接合して、それぞれ新しくて古いアドレスに対応するマルチキャストアドレスを請求されたノードに出なければなりません。 アドレスが同じ請求されたノードマルチキャストアドレスに写像するかもしれないそんなに複数のユニキャストに注意してください。 ノードはそのマルチキャストアドレスに対応するすべての割り当てられたアドレスを取り除くまで請求されたノードマルチキャストグループを出てはいけません。

7.2.2.  Sending Neighbor Solicitations

7.2.2. 送付隣人懇願

   When a node has a unicast packet to send to a neighbor, but does not
   know the neighbor's link-layer address, it performs address
   resolution.  For multicast-capable interfaces this entails creating a
   Neighbor Cache entry in the INCOMPLETE state and transmitting a
   Neighbor Solicitation message targeted at the neighbor.  The
   solicitation is sent to the solicited-node multicast address
   corresponding to the target address.

ノードが隣人に送るユニキャストパケットを持っていますが、隣人のリンクレイヤアドレスを知らないとき、それはアドレス解決を実行します。 マルチキャストできるインタフェースに関しては、これは、INCOMPLETE状態でNeighbor Cacheエントリーを作成して、隣人をターゲットにしたNeighbor Solicitationメッセージを送るのを伴います。 あて先アドレスに対応する請求されたノードマルチキャストアドレスに懇願を送ります。

   If the source address of the packet prompting the solicitation is the
   same as one of the addresses assigned to the outgoing interface, that
   address SHOULD be placed in the IP Source Address of the outgoing
   solicitation.  Otherwise, any one of the addresses assigned to the
   interface should be used.  Using the prompting packet's source
   address when possible insures that the recipient of the Neighbor
   Solicitation installs in its Neighbor Cache the IP address that is
   highly likely to be used in subsequent return traffic belonging to
   the prompting packet's "connection".

懇願をうながすパケットのソースアドレスが同じであるなら、外向的なインタフェース、そのアドレスSHOULDに割り当てられたアドレスの1つとして、外向的な懇願のIP Source Addressに置かれてください。 さもなければ、インタフェースに割り当てられたアドレスのいずれも使用されるべきです。 可能であるときにうながすパケットのソースアドレスを使用するのは、Neighbor Solicitationの受取人がうながすパケットの「接続」に属しながらその後のリターン交通で非常に使用されそうなIPアドレスをNeighbor Cacheにインストールするのを保障します。

   If the solicitation is being sent to a solicited-node multicast
   address, the sender MUST include its link-layer address (if it has
   one) as a Source Link-Layer Address option.  Otherwise, the sender

請求されたノードマルチキャストアドレスに懇願を送るなら、送付者はSource Link-層のAddressオプションとしてリンクレイヤアドレス(それに1つがあるなら)を入れなければなりません。 そうでなければ、送付者

Narten, Nordmark & Simpson  Standards Track                    [Page 57]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[57ページ]。

   SHOULD include its link-layer address (if it has one) as a Source
   Link-Layer Address option.  Including the source link-layer address
   in a multicast solicitation is required to give the target an address
   to which it can send the Neighbor Advertisement.

SHOULDはSource Link-層のAddressオプションとしてリンクレイヤアドレス(それに1つがあるなら)を含んでいます。 マルチキャスト懇願にソースリンクレイヤアドレスを含むのが、それがNeighbor Advertisementを送ることができるアドレスを目標に与えるのに必要です。

   While waiting for address resolution to complete, the sender MUST,
   for each neighbor, retain a small queue of packets waiting for
   address resolution to complete.  The queue MUST hold at least one
   packet, and MAY contain more.  However, the number of queued packets
   per neighbor SHOULD be limited to some small value.  When a queue
   overflows, the new arrival SHOULD replace the oldest entry.  Once
   address resolution completes, the node transmits any queued packets.

終了するアドレス解決を待っている間、各隣人のために、送付者はパケットが終了するアドレス解決を待つ小さい待ち行列を保有しなければなりません。 待ち行列は、少なくとも1つのパケットを保持しなければならなくて、以上を含むかもしれません。 しかしながら、列に並ばせられたパケットの隣人SHOULDあたりの数に何らかの小さい値に制限されてください。 待ち行列があふれると、出生SHOULDは最も古いエントリーを取り替えます。 一度、決議が完成するアドレス、ノードはどんな列に並ばせられたパケットも伝えます。

   While awaiting a response, the sender SHOULD retransmit Neighbor
   Solicitation messages approximately every RetransTimer milliseconds,
   even in the absence of additional traffic to the neighbor.
   Retransmissions MUST be rate-limited to at most one solicitation per
   neighbor every RetransTimer milliseconds.

送付者SHOULDが応答を待っている間、Neighbor Solicitationメッセージを再送する、およそあらゆるRetransTimer、ミリセカンド、隣人への追加交通がないとき、同等です。 Retransmissionsは1隣人ほとんどの1つの懇願のあらゆるRetransTimerにレートで限られたミリセカンドでなければなりません。

   If no Neighbor Advertisement is received after MAX_MULTICAST_SOLICIT
   solicitations, address resolution has failed.  The sender MUST return
   ICMP destination unreachable indications with code 3 (Address
   Unreachable) for each packet queued awaiting address resolution.

マックス_MULTICAST_SOLICIT懇願の後にNeighbor Advertisementを全く受け取らないなら、アドレス解決は失敗しました。 送付者はアドレス解決を待ちながら列に並ばせられた各パケットのためにコード3(アドレスUnreachable)による目的地の手の届かない指摘をICMPに返さなければなりません。

7.2.3.  Receipt of Neighbor Solicitations

7.2.3. 隣人懇願の領収書

   A valid Neighbor Solicitation where the Target Address is not a
   unicast or anycast address assigned to the receiving interface, and
   the Target Address is not a "tentative" address on which Duplicate
   Address Detection is being performed [ADDRCONF] MUST be silently
   ignored.  If the Target Address is tentative, the Neighbor
   Solicitation should be processed as described in [ADDRCONF].

静かに、Target Addressが受信インタフェースに割り当てられたユニキャストでなくて、またまたはanycastアドレスでもなく、Target AddressがDuplicate Address Detectionが実行されている「一時的な」アドレスでない有効なNeighbor Solicitation[ADDRCONF]を無視しなければなりません。 Target Addressが一時的であるなら、Neighbor Solicitationは[ADDRCONF]で説明されるように処理されるべきです。

   Upon receipt of a valid Neighbor Solicitation targeted at the node,
   the recipient SHOULD update the Neighbor Cache entry for the IP
   Source Address of the solicitation if the Source Address is not the
   unspecified address.  If an entry does not already exist, the node
   SHOULD create a new one and set its reachability state to STALE as
   specified in Section 7.3.3.  If a cache entry already exists and is
   updated with a different link-layer address its reachability state
   MUST be set to STALE.  If the solicitation contains a Source Link-
   Layer Address option, the entry's cached link-layer address should be
   replaced with the one in the solicitation.

ノードをターゲットにした有効なNeighbor Solicitationを受け取り次第、受取人SHOULDはSource Addressが不特定のアドレスでないなら懇願のIP Source AddressのためにNeighbor Cacheエントリーをアップデートします。 エントリーが既に存在していないなら、ノードSHOULDはセクション7.3.3における指定されるとしてのSTALEに新しいものを作成して、可到達性状態を設定します。 キャッシュエントリーは既に存在していて、異なったリンクレイヤアドレスでアップデートするなら、可到達性状態をSTALEに設定しなければなりません。 懇願がSource Link層のAddressオプションを含んでいるなら、懇願でエントリーのキャッシュされたリンクレイヤアドレスをものに取り替えるべきです。

   If the Source Address is the unspecified address the node MUST NOT
   create or update the Neighbor Cache entry.

Source Addressが不特定のアドレスであるなら、ノードは、Neighbor Cacheエントリーを作成してはいけませんし、またアップデートしてはいけません。

Narten, Nordmark & Simpson  Standards Track                    [Page 58]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[58ページ]。

   After any updates to the Neighbor Cache, the node sends a Neighbor
   Advertisement response as described in the next section.

Neighbor Cacheへのどんなアップデートの後にも、ノードは次のセクションで説明されるようにNeighbor Advertisement応答を送ります。

7.2.4.  Sending Solicited Neighbor Advertisements

7.2.4. 発信は隣人広告に請求しました。

   A node sends a Neighbor Advertisement in response to a valid Neighbor
   Solicitation targeting one of the node's assigned addresses.  The
   Target Address of the advertisement is copied from the Target Address
   of the solicitation.  If the solicitation's IP Destination Address is
   a unicast or anycast address, the Target Link-Layer Address option
   SHOULD NOT be included; the neighboring node's cached value must
   already be current in order for the solicitation to have been
   received.  If the solicitation's IP Destination Address is a
   solicited-node multicast address, the Target Link-Layer option MUST
   be included in the advertisement.  If the node is a router, it MUST
   set the Router flag to one; otherwise it MUST set the flag to zero.

ノードはノードの割り当てられたアドレスの1つを狙う有効なNeighbor Solicitationに対応してNeighbor Advertisementを送ります。 広告のTarget Addressは懇願のTarget Addressからコピーされます。 含まれていて、懇願のIP Destination Addressがユニキャストかanycastアドレス、Address Target Link-層のオプションSHOULD NOTであるなら。 隣接しているノードのキャッシュされた値は、懇願を受けたために既によく見られなければなりません。 懇願のIP Destination Addressが請求されたノードマルチキャストアドレスであるなら、広告にTarget Link-層のオプションを含まなければなりません。 ノードがルータであるなら、Router旗を1つに設定しなければなりません。 さもなければ、それはゼロに旗を設定しなければなりません。

   If the Target Address is either an anycast address or a unicast
   address for which the node is providing proxy service, or the Target
   Link-Layer Address option is not included in the outgoing
   advertisement, the Override flag SHOULD be set to zero.  Otherwise,
   it SHOULD be set to one.  Proper setting of the Override flag insures
   that nodes give preference to non-proxy advertisements, even when
   received after proxy advertisements, but that the first advertisement
   for an anycast address "wins".

オプションはTarget Addressがノードが代理業務を備えているanycastアドレスかユニキャストアドレスかAddress Target Link-層のどちらかであるなら外向的な広告に含まれていません、Override旗のSHOULD。ゼロに設定されます。 そうでなければ、それ、SHOULD、1つに設定されてください。 Override旗の適切な設定は、プロキシ広告の後に受け取るとノードが非プロキシ広告に優先を与えますが、anycastアドレスのための最初の広告が「勝つこと」を保障します。

   If the source of the solicitation is the unspecified address, the
   node MUST set the Solicited flag to zero and multicast the
   advertisement to the all-nodes address.  Otherwise, the node MUST set
   the Solicited flag to one and unicast the advertisement to the Source
   Address of the solicitation.

懇願の源が不特定のアドレス、ノードがSolicited旗をゼロに設定しなければならないということであり、マルチキャストがオールノードアドレスへの広告であるなら。 さもなければ、ノードはSolicited旗を1つに設定しなければなりません、そして、ユニキャストは懇願のSource Addressへの広告を設定します。

   If the Target Address is an anycast address the sender SHOULD delay
   sending a response for a random time between 0 and
   MAX_ANYCAST_DELAY_TIME seconds.

Target Addressがanycastであるなら、無作為の時間0とマックス_ANYCAST_DELAY_タイム誌秒の間に応答を送る送付者SHOULD遅れを記述してください。

7.2.5.  Receipt of Neighbor Advertisements

7.2.5. 隣人広告の領収書

   When a valid Neighbor Advertisement is received (either solicited or
   unsolicited), the Neighbor Cache is searched for the target's entry.
   If no entry exists, the advertisement SHOULD be silently discarded.
   There is no need to create an entry in this case, since the recipient
   has apparently not initiated any communication with the target.

有効なNeighbor Advertisementが受け取られているとき(請求されたか、求められていない)、Neighbor Cacheは目標のエントリーを捜されます。 エントリーが全く存在していないなら、捨てられて、広告SHOULDは静かに存在しています。 この場合エントリーを作成する必要は全くありません、受取人が明らかに目標との少しのコミュニケーションも開始していないので。

   Once the appropriate Neighbor Cache entry has been located, the
   specific actions taken depend on the state of the Neighbor Cache
   entry and the flags in the advertisement.  If the entry is in an
   INCOMPLETE state (i.e., no link-layer address is cached for the

適切なNeighbor Cacheエントリーがいったん見つけられると、取られた特定の行動はNeighbor Cacheエントリーと広告における旗の状態に依存します。 エントリーがINCOMPLETE状態にある、(すなわち、リンクレイヤがないアドレスはキャッシュされます。

Narten, Nordmark & Simpson  Standards Track                    [Page 59]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[59ページ]。

   target) the received advertisement updates the entry.  If a cached
   link-layer address is already present, however, a node might choose
   to ignore the received advertisement and continue using the cached
   link-layer address.

目標) 受け取られていている広告はエントリーをアップデートします。 しかしながら、キャッシュされたリンクレイヤアドレスが既に存在しているなら、ノードは、受け取られていている広告を無視して、キャッシュされたリンクレイヤアドレスを使用し続けているのを選ぶかもしれません。

   If the target's Neighbor Cache entry is in the INCOMPLETE state, the
   receiving node records the link-layer address in the Neighbor Cache
   entry and sends any packets queued for the neighbor awaiting address
   resolution.  If the Solicited flag is set, the reachability state for
   the neighbor MUST be set to REACHABLE; otherwise it MUST be set to
   STALE. (A more detailed explanation of reachability state is
   described in Section 7.3.3).  The Override flag is ignored if the
   entry is in the INCOMPLETE state.

目標のNeighbor CacheエントリーがINCOMPLETE状態にあるなら、受信ノードで、リンクレイヤアドレスをNeighbor Cacheエントリーに記録して、隣人のために列に並ばせられたどんなパケットもアドレス解決を待ちます。 Solicited旗が設定されるなら、隣人のための可到達性状態をREACHABLEに設定しなければなりません。 さもなければ、STALEにそれを設定しなければなりません。 (可到達性状態の、より詳細な説明はセクション7.3.3で説明されます。) エントリーがINCOMPLETE状態にあるなら、Override旗は無視されます。

   If the target's Neighbor Cache entry is in any state other than
   INCOMPLETE when the advertisement is received, the advertisement's
   Override flag's setting determines whether the Target Link-Layer
   Address option (if present) replaces the cached address.  If the
   Override flag is set, the receiving node MUST install the link-layer
   address in its cache; if the flag is zero, the receiving node MUST
   NOT install the link-layer address in its cache.  An advertisement's
   sender sets the Override flag when it wants its Target Link-Layer
   Address option to replace the cached value in Neighbor Cache entries,
   regardless of their current contents.

広告が受け取られているとき、目標のNeighbor CacheエントリーがINCOMPLETE以外のどんな状態にもあるなら、広告のOverride旗の設定は、Target Link-層のAddressオプション(存在しているなら)がキャッシュされたアドレスに取って代わるかどうか決定します。 Override旗が設定されるなら、受信ノードはリンクレイヤアドレスをキャッシュにインストールしなければなりません。 旗がゼロであるなら、受信ノードはリンクレイヤアドレスをキャッシュにインストールしてはいけません。 それが、Target Link-層のAddressオプションにNeighbor Cacheエントリーでキャッシュされた値に取って代わって欲しいときに、広告の送付者はOverride旗を設定します、それらの現在のコンテンツにかかわらず。

   If the target's Neighbor Cache entry is in any state other than
   INCOMPLETE when the advertisement is received, the advertisement's
   Solicited flag setting determines what the entry's new state should
   be.  If the Solicited flag is set, the entry's state MUST be set to
   REACHABLE; if the flag is zero, the entry's state MUST be set to
   STALE.  An advertisement's Solicited flag should only be set if the
   advertisement is a response to a Neighbor Solicitation.  Because
   Neighbor Unreachability Solicitations are sent to the cached link-
   layer address, a receipt of a solicited advertisement indicates that
   the forward path is working.  Receipt of an unsolicited
   advertisement, however, suggests that a neighbor has urgent
   information to announce (e.g., a changed link-layer address).
   Regardless of whether or not the new link-layer address is installed
   in the cache, a node should verify the reachability of the path it is
   currently using when it sends the next packet, so that it quickly
   finds a working path if the existing path has failed (e.g., as would
   be the case if the unsolicited Neighbor Advertisement is sent to
   announce a link-layer address change).

広告が受け取られているとき、目標のNeighbor CacheエントリーがINCOMPLETE以外のどんな状態にもあるなら、広告のSolicited旗の設定は、エントリーの新しい状態が何であるべきであるかを決定します。 Solicited旗が設定されるなら、エントリーの状態をREACHABLEに設定しなければなりません。 旗がゼロであるなら、エントリーの状態をSTALEに設定しなければなりません。 広告のSolicited旗は広告がNeighbor Solicitationへの応答である場合にだけ設定されるべきです。 キャッシュされたリンク層のアドレスにNeighbor Unreachability Solicitationsを送るので、請求された広告の領収書は、フォワードパスが働いているのを示します。 しかしながら、求められていない広告の領収書は、隣人には発表する緊急の情報(例えば、変えられたリンクレイヤアドレス)があるのを示します。 次のパケットを送るとき、新しいリンクレイヤアドレスがキャッシュにインストールされるかどうかにかかわらず、ノードはそれが現在使用している経路の可到達性について確かめるはずです、既存の経路が失敗したなら(例えば、リンクレイヤアドレス変更を発表するために求められていないNeighbor Advertisementを送るならそうであるように)すぐに働く経路を見つけるように。

   In those cases where the cached link-layer address is updated, the
   receiving node MUST examine the Router flag in the received
   advertisement and update the IsRouter flag in the Neighbor Cache
   entry to reflect whether the node is a host or router.  In those

キャッシュされたリンクレイヤアドレスがアップデートされるそれらの場合では、ホストかルータであることにかかわらず、受信ノードは、受け取られていている広告でRouter旗を調べて、反射するためにNeighbor CacheエントリーでIsRouter旗をアップデートしなければなりません。 それらで

Narten, Nordmark & Simpson  Standards Track                    [Page 60]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[60ページ]。

   cases where the neighbor was previously used as a router, but the
   advertisement's Router flag is now set to zero, the node MUST remove
   that router from the Default Router List and update the Destination
   Cache entries for all destinations using that neighbor as a router as
   specified in Section 7.3.3.

隣人が以前に、ルータとして使用されましたが、広告のRouter旗が現在ゼロに設定されるケース、ノードはセクション7.3.3における指定されるとしてのルータとしてその隣人を使用することでDefault Router Listからそのルータを取り除いて、Destination Cacheエントリーをすべての目的地にアップデートしなければなりません。

7.2.6.  Sending Unsolicited Neighbor Advertisements

7.2.6. 送付の求められていない隣人広告

   In some cases a node may be able to determine that its link-layer
   address has changed (e.g., hot-swap of an interface card) and may
   wish to inform its neighbors of the new link-layer address quickly.
   In such cases a node MAY send up to MAX_NEIGHBOR_ADVERTISEMENT
   unsolicited Neighbor Advertisement messages to the all-nodes
   multicast address.  These advertisements MUST be separated by at
   least RetransTimer seconds.

いくつかの場合、ノードは、リンクレイヤアドレスが(例えば、インタフェースカードのホットスワップ)を変えたことを決定できて、新しいリンクレイヤアドレスについてすばやく隣人に知らせたがっているかもしれません。 そのような場合ノードはオールノードマルチキャストアドレスにマックス_NEIGHBORの_のADVERTISEMENTの求められていないNeighbor Advertisementメッセージまで発信するかもしれません。 少なくともRetransTimer秒までにこれらの広告を切り離さなければなりません。

   The Target Address field in the unsolicited advertisement is set to
   an IP address of the interface, and the Target Link-Layer Address
   option is filled with the new link-layer address.  The Solicited flag
   MUST be set to zero, in order to avoid confusing the Neighbor
   Unreachability Detection algorithm.  If the node is a router, it MUST
   set the Router flag to one; otherwise it MUST set it to zero.  The
   Override flag MAY be set to either zero or one.  In either case,
   neighboring nodes will immediately change the state of their Neighbor
   Cache entries for the Target Address to STALE, prompting them to
   verify the path for reachability.  If the Override flag is set to
   one, neighboring nodes will install the new link-layer address in
   their caches.  Otherwise, they will ignore the new link-layer
   address, choosing instead to probe the cached address.

求められていない広告におけるTarget Address分野はインタフェースのIPアドレスに設定されます、そして、Target Link-層のAddressオプションは新しいリンクレイヤアドレスで満たされます。 Neighbor Unreachability Detectionアルゴリズムを混乱させるのを避けるためにSolicited旗をゼロに設定しなければなりません。 ノードがルータであるなら、Router旗を1つに設定しなければなりません。 さもなければ、それはゼロにそれを設定しなければなりません。 Override旗はゼロか1つのどちらかに設定されるかもしれません。 どちらの場合ではも、隣接しているノードはすぐにTarget Addressのために彼らのNeighbor Cacheエントリーの状態をSTALEに変えるでしょう、彼らが可到達性のために経路について確かめるようにうながして。 Override旗が1つに設定されると、隣接しているノードは新しいリンクレイヤアドレスをそれらのキャッシュにインストールするでしょう。 さもなければ、キャッシュされたアドレスを調べるのを代わりに選んで、彼らは新しいリンクレイヤアドレスを無視するでしょう。

   A node that has multiple IP addresses assigned to an interface MAY
   multicast a separate Neighbor Advertisement for each address.  In
   such a case the node SHOULD introduce a small delay between the
   sending of each advertisement to reduce the probability of the
   advertisements being lost due to congestion.

複数のIPアドレスを持っているノードは各アドレスのためにインタフェース5月のマルチキャストに別々のNeighbor Advertisementを割り当てました。 このような場合にはノードSHOULDは、混雑のため失われている広告の確率を減少させるためにそれぞれの広告の発信の間に小さい遅れを導入します。

   A proxy MAY multicast Neighbor Advertisements when its link-layer
   address changes or when it is configured (by system management or
   other mechanisms) to proxy for an address.  If there are multiple
   nodes that are providing proxy services for the same set of addresses
   the proxies SHOULD provide a mechanism that prevents multiple proxies
   from multicasting advertisements for any one address, in order to
   reduce the risk of excessive multicast traffic.

リンクレイヤアドレスが変化するか、またはそれがアドレスのためにプロキシに構成される(システム管理か他のメカニズムで)プロキシ5月のマルチキャストNeighbor Advertisements。 同じセットのアドレスのための代理業務にプロキシを備えている複数のノードがあれば、SHOULDはどんなアドレスのためにもマルチキャスティング広告から複数のプロキシを防ぐメカニズムを提供します、過度のマルチキャスト交通の危険を減少させるために。

   Also, a node belonging to an anycast address MAY multicast
   unsolicited Neighbor Advertisements for the anycast address when the
   node's link- layer address changes.

また、ノードのものが層のアドレスをリンクするときanycastのための求められていないNeighbor Advertisementsが記述するanycastアドレス5月のマルチキャストに属すノードは変化します。

Narten, Nordmark & Simpson  Standards Track                    [Page 61]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[61ページ]。

   Note that because unsolicited Neighbor Advertisements do not reliably
   update caches in all nodes (the advertisements might not be received
   by all nodes), they should only be viewed as a performance
   optimization to quickly update the caches in most neighbors.  The
   Neighbor Unreachability Detection algorithm ensures that all nodes
   obtain a reachable link-layer address, though the delay may be
   slightly longer.

求められていないNeighbor Advertisementsがすべてのノードのキャッシュを確かにアップデートしないので(広告はすべてのノードによって受け取られないかもしれません)それらがほとんどの隣人ですぐにキャッシュをアップデートするためにパフォーマンスの最適化として見なされるだけであるべきであることに注意してください。 Neighbor Unreachability Detectionアルゴリズムは、すべてのノードが届いているリンクレイヤアドレスを得るのを確実にします、遅れがわずかに長いかもしれませんが。

7.2.7.  Anycast Neighbor Advertisements

7.2.7. Anycast隣人広告

   From the perspective of Neighbor Discovery, anycast addresses are
   treated just like unicast addresses in most cases.  Because an
   anycast address is syntactically the same as a unicast address, nodes
   performing address resolution or Neighbor Unreachability Detection on
   an anycast address treat it as if it were a unicast address.  No
   special processing takes place.

多くの場合、Neighborディスカバリーの見解から、anycastアドレスはまさしくユニキャストアドレスのように扱われます。 anycastアドレスがユニキャストアドレスとシンタクス上同じであるので、anycastアドレスにアドレス解決かNeighbor Unreachability Detectionを実行するノードがまるでそれがユニキャストアドレスであるかのようにそれを扱います。 どんな特別な処理も行われません。

   Nodes that have an anycast address assigned to an interface treat
   them exactly the same as if they were unicast addresses with two
   exceptions.  First, Neighbor Advertisements sent in response to a
   Neighbor Solicitation SHOULD be delayed by a random time between 0
   and MAX_ANYCAST_DELAY_TIME to reduce the probability of network
   congestion.  Second, the Override flag in Neighbor Advertisements
   SHOULD be set to 0, so that when multiple advertisements are
   received, the first received advertisement is used rather than the
   most recently received advertisement.

anycastアドレスをインタフェースに割り当てるノードはまさにまるでそれらが2つの例外があるユニキャストアドレスであるかのように同じようにそれらを扱います。 最初に、Neighbor AdvertisementsはNeighbor Solicitation SHOULDに対応して発信しました。ネットワークの混雑の確率を減少させる0とマックス_ANYCAST_DELAY_タイム誌の間の無作為の時間までには、遅れてください。 したがって、Neighbor Advertisements SHOULDのOverride旗が0に設定されて、2番目に、多ページ広告が受け取られているとき、1番目が広告を受け取ったのは、最も最近広告を受け取るよりむしろ使用されています。

   As with unicast addresses, Neighbor Unreachability Detection ensures
   that a node quickly detects when the current binding for an anycast
   address becomes invalid.

ユニキャストアドレスのように、Neighbor Unreachability Detectionは、ノードが、anycastアドレスのための現在の結合がいつ無効になるかをすぐに検出するのを確実にします。

7.2.8.  Proxy Neighbor Advertisements

7.2.8. プロキシ隣人広告

   Under limited circumstances, a router MAY proxy for one or more other
   nodes, that is, through Neighbor Advertisements indicate that it is
   willing to accept packets not explicitly addressed to itself.  For
   example, a router might accept packets on behalf of a mobile node
   that has moved off-link.  The mechanisms used by proxy are identical
   to the mechanisms used with anycast addresses.

限られた事情、他の1つ以上のノードのためのルータ5月のプロキシの下では、すなわち、Neighbor Advertisementsを通して、パケットが明らかにそれ自体に記述されていないと受け入れても構わないと思っているのを示してください。 例えば、ルータはオフリンクを動かした可動のノードを代表してパケットを受け入れるかもしれません。 代理人を通して使用されるメカニズムはanycastアドレスと共に使用されるメカニズムと同じです。

   A proxy MUST join the solicited-node multicast address(es) that
   correspond to the IP address(es) assigned to the node for which it is
   proxying.

プロキシはそれがproxyingされているノードに割り当てられたIPアドレス(es)に一致している請求されたノードマルチキャストアドレス(es)に加わらなければなりません。

   All solicited proxy Neighbor Advertisement messages MUST have the
   Override flag set to zero.  This ensures that if the node itself is
   present on the link its Neighbor Advertisement (with the Override
   flag set to one) will take precedence of any advertisement received

すべてがOverride旗がNeighbor Advertisementメッセージでゼロに設定しなければならないプロキシに請求しました。 これは、ノード自体がNeighbor Advertisement(1つに設定されたOverride旗がある)が優先するリンクに存在しているならどんな広告も受信されたのを確実にします。

Narten, Nordmark & Simpson  Standards Track                    [Page 62]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[62ページ]。

   from a proxy.  A proxy MAY send unsolicited advertisements with the
   Override flag set to one as specified in Section 7.2.6, but doing so
   may cause the proxy advertisement to override a valid entry created
   by the node itself.

プロキシから。 プロキシはセクション7.2.6における指定されるとしての1つに設定されたOverride旗で未承諾広告を送るかもしれませんが、そうするのはプロキシ広告にノード自体によって作成された有効なエントリーをくつがえさせるかもしれません。

   Finally, when sending a proxy advertisement in response to a Neighbor
   Solicitation, the sender should delay its response by a random time
   between 0 and MAX_ANYCAST_DELAY_TIME seconds.

Neighbor Solicitationに対応してプロキシ広告を送るとき、最終的に、送付者は無作為の時間までに応答を0とマックス_ANYCAST_DELAY_タイム誌秒の間遅らせるべきです。

7.3.  Neighbor Unreachability Detection

7.3. 隣人Unreachability検出

   Communication to or through a neighbor may fail for numerous reasons
   at any time, including hardware failure, hot-swap of an interface
   card, etc.  If the destination has failed, no recovery is possible
   and communication fails.  On the other hand, if it is the path that
   has failed, recovery may be possible.  Thus, a node actively tracks
   the reachability "state" for the neighbors to which it is sending
   packets.

隣人か隣人を通したコミュニケーションはいつでも多数の理由で失敗するかもしれません、ハードウェアの故障、インタフェースカードのホットスワップなどを含んでいて 目的地が失敗したなら、どんな回復も可能ではありません、そして、コミュニケーションは失敗します。 他方では、それが失敗した経路であるなら、回復は可能であるかもしれません。 したがって、ノードはそれがパケットを送る隣人のために活発に可到達性「状態」を追跡します。

   Neighbor Unreachability Detection is used for all paths between hosts
   and neighboring nodes, including host-to-host, host-to-router, and
   router-to-host communication.  Neighbor Unreachability Detection may
   also be used between routers, but is not required if an equivalent
   mechanism is available, for example, as part of the routing
   protocols.

隣人Unreachability Detectionはホストからホスト、ホストからルータ、およびルータからホストへのコミュニケーションを含むホストと隣接しているノードの間のすべての経路に使用されます。 隣人Unreachability Detectionはまた、ルータの間で使用されるかもしれませんが、例えば、同等なメカニズムがルーティング・プロトコルの一部として利用可能であるなら、必要ではありません。

   When a path to a neighbor appears to be failing, the specific
   recovery procedure depends on how the neighbor is being used.  If the
   neighbor is the ultimate destination, for example, address resolution
   should be performed again.  If the neighbor is a router, however,
   attempting to switch to another router would be appropriate.  The
   specific recovery that takes place is covered under next-hop
   determination; Neighbor Unreachability Detection signals the need for
   next-hop determination by deleting a Neighbor Cache entry.

隣人への経路が失敗しているように見えるとき、特定のリカバリ手順は隣人がどう使用されているかに依存します。 隣人が最終仕向地であるなら、例えば、アドレス解決は再び実行されるべきです。 隣人がそうなら、しかしながら、別のルータに切り替わるのを試みるルータは適切でしょう。 起こる特定の回復は次のホップ決断でカバーされています。 Neighbor Cacheエントリーを削除することによって、隣人Unreachability Detectionは次のホップ決断の必要性に合図します。

   Neighbor Unreachability Detection is performed only for neighbors to
   which unicast packets are sent; it is not used when sending to
   multicast addresses.

隣人Unreachability Detectionはユニキャストパケットが送られる隣人だけのために実行されます。 マルチキャストアドレスに発信するとき、それは使用されていません。

7.3.1.  Reachability Confirmation

7.3.1. 可到達性確認

   A neighbor is considered reachable if the node has recently received
   a confirmation that packets sent recently to the neighbor were
   received by its IP layer.  Positive confirmation can be gathered in
   two ways: hints from upper layer protocols that indicate a connection
   is making "forward progress", or receipt of a Neighbor Advertisement
   message that is a response to a Neighbor Solicitation message.

隣人はノードが最近受信したなら届くと考えられて、IP層のそばにパケットが最近隣人に送った確認を受け取ったということです。 2つの方法で積極的確認を集めることができます: 上側の層のプロトコルからの接続が「前進の進歩」を作っているのを示すヒント、またはNeighbor Solicitationメッセージへの応答であるNeighbor Advertisementメッセージの受領。

Narten, Nordmark & Simpson  Standards Track                    [Page 63]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[63ページ]。

   A connection makes "forward progress" if the packets received from a
   remote peer can only be arriving if recent packets sent to that peer
   are actually reaching it.  In TCP, for example, receipt of a (new)
   acknowledgement indicates that previously sent data reached the peer.
   Likewise, the arrival of new (non-duplicate) data indicates that
   earlier acknowledgements are being delivered to the remote peer.  If
   packets are reaching the peer, they must also be reaching the
   sender's next-hop neighbor; thus "forward progress" is a confirmation
   that the next-hop neighbor is reachable.  For off-link destinations,
   forward progress implies that the first-hop router is reachable.
   When available, this upper-layer information SHOULD be used.

その同輩に送られた最近のパケットが実際にそれに達している場合にだけリモート同輩から受け取られたパケットが到着できるなら、接続は「前進の進歩」を作ります。 TCPでは、例えば、(新しい)の承認の領収書は、以前に送られたデータが同輩に届いたのを示します。 同様に、新しい(非写しの)データの到着は、以前の承認がリモート同輩に提供されているのを示します。 また、パケットが同輩に届いているなら、送付者の次のホップ隣人に届かなければなりません。 したがって、「前進の進歩」は次のホップが届くのを近所付き合いさせる確認です。 オフリンクの目的地に関しては、前進の進歩は、最初に、ホップルータに届いているのを含意します。 利用可能で、これほど上側の層の情報SHOULDであるときには、使用されてください。

   In some cases (e.g., UDP-based protocols and routers forwarding
   packets to hosts) such reachability information may not be readily
   available from upper-layer protocols.  When no hints are available
   and a node is sending packets to a neighbor, the node actively probes
   the neighbor using unicast Neighbor Solicitation messages to verify
   that the forward path is still working.

いくつかの場合(例えば、UDPベースのプロトコルとパケットをホストに送るルータ)、そのような可到達性情報は上側の層のプロトコルから容易に利用可能でないかもしれません。 どんなヒントも利用可能でなく、ノードがパケットを隣人に送るとき、ノードは、フォワードパスがまだ働いていることを確かめるユニキャストNeighbor Solicitationメッセージを使用することで活発に隣人を調べます。

   The receipt of a solicited Neighbor Advertisement serves as
   reachability confirmation, since advertisements with the Solicited
   flag set to one are sent only in response to a Neighbor Solicitation.
   Receipt of other Neighbor Discovery messages such as Router
   Advertisements and Neighbor Advertisement with the Solicited flag set
   to zero MUST NOT be treated as a reachability confirmation.  Receipt
   of unsolicited messages only confirm the one-way path from the sender
   to the recipient node.  In contrast, Neighbor Unreachability
   Detection requires that a node keep track of the reachability of the
   forward path to a neighbor from the its perspective, not the
   neighbor's perspective.  Note that receipt of a solicited
   advertisement indicates that a path is working in both directions.
   The solicitation must have reached the neighbor, prompting it to
   generate an advertisement.  Likewise, receipt of an advertisement
   indicates that the path from the sender to the recipient is working.
   However, the latter fact is known only to the recipient; the
   advertisement's sender has no direct way of knowing that the
   advertisement it sent actually reached a neighbor.  From the
   perspective of Neighbor Unreachability Detection, only the
   reachability of the forward path is of interest.

請求されたNeighbor Advertisementの領収書は可到達性確認として機能します、単にNeighbor Solicitationに対応して1つに設定されたSolicited旗による広告を送るので。 ゼロに設定されたSolicited旗があるRouter AdvertisementsやNeighbor Advertisementなどの他のNeighborディスカバリーメッセージの領収書を可到達性確認として扱ってはいけません。 お節介なメッセージの領収書は送付者から受取人ノードまで一方通行の経路を確認するだけです。 対照的に、Neighbor Unreachability Detectionが生活費が隣人へのフォワードパスの可到達性を追跡するそのaノードを必要とする、その見解(隣人の見解でない) 請求された広告の領収書が、経路が両方の方向に働いているのを示すことに注意してください。 広告を作るようにうながして、懇願は隣人に届いたに違いありません。 同様に、広告の領収書は、送付者から受取人までの経路が働いているのを示します。 しかしながら、後者の事実は受取人だけにおいて知られています。 広告の送付者には、それが送った広告が実際に隣人に届いたのを知るどんなダイレクト方法もありません。 Neighbor Unreachability Detectionの見解から、フォワードパスの可到達性だけが興味があります。

7.3.2.  Neighbor Cache Entry States

7.3.2. 隣人キャッシュエントリー州

   A Neighbor Cache entry can be in one of five states:

Neighbor Cacheエントリーが5つの州の1つにあることができます:

   INCOMPLETE  Address resolution is being performed on the entry.
               Specifically, a Neighbor Solicitation has been sent to
               the solicited-node multicast address of the target, but
               the corresponding Neighbor Advertisement has not yet been

INCOMPLETE Address解決はエントリーに実行されています。 明確に、目標の請求されたノードマルチキャストアドレスにNeighbor Solicitationを送りました、しかし、対応するNeighbor Advertisementがまだありません。

Narten, Nordmark & Simpson  Standards Track                    [Page 64]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[64ページ]。

               received.

受け取られている。

   REACHABLE   Positive confirmation was received within the last
               ReachableTime milliseconds that the forward path to the
               neighbor was functioning properly.  While REACHABLE, no
               special action takes place as packets are sent.

隣人へのフォワードパスはミリセカンドでしたが、適切に機能しながら、最後のReachableTimeの中にREACHABLE Positive確認を受け取りました。 REACHABLEである間、パケットを送るのに従って、どんな特別な動きも行われません。

   STALE       More than ReachableTime milliseconds have elapsed since
               the last positive confirmation was received that the
               forward path was functioning properly.  While stale, no
               action takes place until a packet is sent.

STALE More、フォワードパスが確認が受け取られたのを確信している最終でしたが、ReachableTimeミリセカンドが適切に機能しながら経過したより。 聞き古したである、動作は全くパケットを送るまで行われません。

               The STALE state is entered upon receiving an unsolicited
               Neighbor Discovery message that updates the cached link-
               layer address.  Receipt of such a message does not
               confirm reachability, and entering the STALE state
               insures reachability is verified quickly if the entry is
               actually being used.  However, reachability is not
               actually verified until the entry is actually used.

キャッシュされたリンク層のアドレスをアップデートする求められていないNeighborディスカバリーメッセージを受け取りながら、STALE状態を始めます。 そのようなメッセージの領収書は可到達性を確認しません、そして、STALE状態に入るのはエントリーが実際に使用されているなら可到達性がすぐに確かめられるのを保障します。 しかしながら、エントリーが実際に使用されるまで、可到達性は実際に確かめられません。

   DELAY       More than ReachableTime milliseconds have elapsed since
               the last positive confirmation was received that the
               forward path was functioning properly, and a packet was
               sent within the last DELAY_FIRST_PROBE_TIME seconds.  If
               no reachability confirmation is received within
               DELAY_FIRST_PROBE_TIME seconds of entering the DELAY
               state, send a Neighbor Solicitation and change the state
               to PROBE.

DELAY More、フォワードパスが確認が受け取られたのを確信している最終でしたが、ReachableTimeミリセカンドが適切に機能しながら経過して、最後のDELAY_FIRST_PROBE_タイム誌秒以内にパケットを送ったより。 入ったDELAYが述べる後DELAY_FIRST_PROBE_タイム誌秒以内に可到達性確認を全く受け取らないなら、Neighbor Solicitationを送ってください、そして、状態をPROBEに変えてください。

               The DELAY state is an optimization that gives upper-layer
               protocols additional time to provide reachability
               confirmation in those cases where ReachableTime
               milliseconds have passed since the last confirmation due
               to lack of recent traffic.  Without this optimization the
               opening of a TCP connection after a traffic lull would
               initiate probes even though the subsequent three-way
               handshake would provide a reachability confirmation
               almost immediately.

DELAY状態はそれらのケースに中最近の交通の不足による最後の確認以来ReachableTimeミリセカンドが通っている可到達性確認を供給する追加時間を上側の層のプロトコルに与える最適化です。 この最適化がなければ、その後の3方向ハンドシェイクはほぼすぐに、可到達性確認を提供するでしょうが、交通小止みの後のTCP接続の始まりは徹底的調査を開始するでしょう。

   PROBE       A reachability confirmation is actively sought by
               retransmitting Neighbor Solicitations every RetransTimer
               milliseconds until a reachability confirmation is
               received.

活発に探された再送Neighbor SolicitationsはあらゆるRetransTimerです。PROBE A可到達性確認、受け取られた可到達性確認までのミリセカンド。

Narten, Nordmark & Simpson  Standards Track                    [Page 65]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[65ページ]。

7.3.3.  Node Behavior

7.3.3. ノードの振舞い

   Neighbor Unreachability Detection operates in parallel with the
   sending of packets to a neighbor.  While reasserting a neighbor's
   reachability, a node continues sending packets to that neighbor using
   the cached link-layer address.  If no traffic is sent to a neighbor,
   no probes are sent.

隣人Unreachability Detectionは隣人へのパケットの送付と平行して作動します。 隣人の可到達性を重ねて主張させている間、ノードは、キャッシュされたリンクレイヤアドレスを使用することでその隣人にパケットを送り続けています。 交通を全く隣人に送らないなら、探測装置を全く送りません。

   When a node needs to perform address resolution on a neighboring
   address, it creates an entry in the INCOMPLETE state and initiates
   address resolution as specified in Section 7.2.  If address
   resolution fails, the entry SHOULD be deleted, so that subsequent
   traffic to that neighbor invokes the next-hop determination procedure
   again.  Invoking next-hop determination at this point insures that
   alternate default routers are tried.

ノードが、隣接しているアドレスにアドレス解決を実行する必要があると、それは、INCOMPLETE状態でエントリーを作成して、セクション7.2で指定されているとしてアドレス解決を開始します。 アドレス解決が失敗するなら、エントリーSHOULDが削除されて、したがって、その隣人へのそのその後の交通は再び次のホップ決断手順を呼び出します。 ここに次のホップ決断を呼び出すのは、交互のデフォルトルータが試験済みであることを保障します。

   When a reachability confirmation is received (either through upper-
   layer advice or a solicited Neighbor Advertisement) an entry's state
   changes to REACHABLE.  The one exception is that upper-layer advice
   has no effect on entries in the INCOMPLETE state (e.g., for which no
   link-layer address is cached).

可到達性確認が受け取られているとき(上側の層のアドバイスか請求されたNeighbor Advertisementを通した)、エントリーの状態はREACHABLEに変化します。 1つの例外は上側の層のアドバイスがエントリーのときにINCOMPLETE状態(例えばリンクレイヤアドレスが全くキャッシュされない)で効き目がないということです。

   When ReachableTime milliseconds have passed since receipt of the last
   reachability confirmation for a neighbor, the Neighbor Cache entry's
   state changes from REACHABLE to STALE.

最後の可到達性確認の領収書以来ReachableTimeミリセカンドが隣人のために通っているとき、Neighbor Cacheエントリーの状態はREACHABLEからSTALEに変化します。

      Note: An implementation may actually defer changing the state from
      REACHABLE to STALE until a packet is sent to the neighbor, i.e.,
      there need not be an explicit timeout event associated with the
      expiration of ReachableTime.

以下に注意してください。 実現は、実際にすなわち、明白なタイムアウトがReachableTimeの満了に関連している出来事でなければならなかったならそこでパケットを隣人に送るまで状態をREACHABLEからSTALEに変えながら、延期するかもしれません。

   The first time a node sends a packet to a neighbor whose entry is
   STALE, the sender changes the state to DELAY and a sets a timer to
   expire in DELAY_FIRST_PROBE_TIME seconds.  If the entry is still in
   the DELAY state when the timer expires, the entry's state changes to
   PROBE.  If reachability confirmation is received, the entry's state
   changes to REACHABLE.

1回目に、ノードはエントリーがSTALEである隣人にパケットを送ります、そして、送付者は状態をDELAYに変えます、そして、セットはDELAY_FIRST_PROBE_タイム誌秒に吐き出すタイマを変えます。 タイマが期限が切れるとき、エントリーがまだDELAY状態にあるなら、エントリーの状態はPROBEに変化します。 可到達性確認が受け取られているなら、エントリーの状態はREACHABLEに変化します。

   Upon entering the PROBE state, a node sends a unicast Neighbor
   Solicitation message to the neighbor using the cached link-layer
   address.  While in the PROBE state, a node retransmits Neighbor
   Solicitation messages every RetransTimer milliseconds until
   reachability confirmation is obtained.  Probes are retransmitted even
   if no additional packets are sent to the neighbor.  If no response is
   received after waiting RetransTimer milliseconds after sending the
   MAX_UNICAST_SOLICIT solicitations, retransmissions cease and the
   entry SHOULD be deleted.  Subsequent traffic to that neighbor will
   recreate the entry and performs address resolution again.

PROBE状態に入ると、ノードは、キャッシュされたリンクレイヤアドレスを使用することでユニキャストNeighbor Solicitationメッセージを隣人に送ります。 Neighbor SolicitationがPROBE状態、ノードが再送するaであらゆるRetransTimerを通信させている間、可到達性確認までのミリセカンドを得ます。 どんな追加パケットも隣人に送らないでも、探測装置を再送します。 _SOLICIT懇願、「再-トランスミッション」をマックス_UNICASTに送ったミリセカンドと同じくらいの後のRetransTimerがやめる待ちとエントリーSHOULDの後に応答を全く受けないなら、削除してください。 その隣人へのその後の交通は、エントリーを休養させて、再びアドレス解決を実行します。

Narten, Nordmark & Simpson  Standards Track                    [Page 66]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[66ページ]。

   Note that all Neighbor Solicitations are rate-limited on a per-
   neighbor basis.  A node MUST NOT send Neighbor Solicitations to the
   same neighbor more frequently than once every RetransTimer
   milliseconds.

すべてのNeighbor Solicitationsがaでレートによって限られることに注意してください、-、隣人基礎。 ノードがNeighbor Solicitationsを同じくらいに送ってはいけないAはミリセカンドをかつてのあらゆるRetransTimerより頻繁に近所付き合いさせます。

   A Neighbor Cache entry enters the STALE state when created as a
   result of receiving packets other than solicited Neighbor
   Advertisements (i.e., Router Solicitations, Router Advertisements,
   Redirects, and Neighbor Solicitations).  These packets contain the
   link-layer address of either the sender or, in the case of Redirect,
   the redirection target.  However, receipt of these link-layer
   addresses does not confirm reachability of the forward-direction path
   to that node.  Placing a newly created Neighbor Cache entry for which
   the link-layer address is known in the STALE state provides assurance
   that path failures are detected quickly.  In addition, should a
   cached link-layer address be modified due to receiving one of the
   above messages the state SHOULD also be set to STALE to provide
   prompt verification that the path to the new link-layer address is
   working.

請求されたNeighbor Advertisements(すなわち、Router Solicitations、Router Advertisements、Redirects、およびNeighbor Solicitations)以外のパケットを受けることの結果、作成されると、Neighbor CacheエントリーはSTALE状態に入ります。 これらのパケットは送付者かRedirectの場合におけるリダイレクション目標のどちらかのリンクレイヤアドレスを含んでいます。 しかしながら、これらのリンクレイヤアドレスの領収書は順方向経路の可到達性をそのノードに確認しません。 リンクレイヤアドレスがSTALE状態で知られている新たに作成されたNeighbor Cacheエントリーを置くと、経路失敗がすぐに検出されるという保証は提供されます。 さらに、キャッシュされたリンクレイヤはまた、受信による上記のメッセージの変更された1つが州のSHOULDであるなら提供するSTALEへのセットが新しいリンクレイヤアドレスへの経路が扱っている迅速な検証であるなら記述するでしょうか?

   To properly detect the case where a router switches from being a
   router to being a host (e.g., if its IP forwarding capability is
   turned off by system management), a node MUST compare the Router flag
   field in all received Neighbor Advertisement messages with the
   IsRouter flag recorded in the Neighbor Cache entry.  When a node
   detects that a neighbor has changed from being a router to being a
   host, the node MUST remove that router from the Default Router List
   and update the Destination Cache as described in Section 6.3.5.  Note
   that a router may not be listed in the Default Router List, even
   though a Destination Cache entry is using it (e.g., a host was
   redirected to it).  In such cases, all Destination Cache entries that
   reference the (former) router must perform next-hop determination
   again before using the entry.

適切に、ルータがルータであるのからホストに切り替わる(例えば、IP推進能力がシステム管理でオフにされるなら)ケースを検出するために、ノードはすべての受信されたNeighbor AdvertisementメッセージのRouter旗の分野をNeighbor Cacheエントリーに記録されるIsRouter旗にたとえなければなりません。 ノードがそれを検出するとき、隣人がルータであるのからホストに変化して、ノードは、セクション6.3.5で説明されるようにDefault Router Listからそのルータを取り除いて、Destination Cacheをアップデートしなければなりません。 ルータがDefault Router Listに記載されていないかもしれないことに注意してください、Destination Cacheエントリーはそれを使用していますが(例えばホストはそれに向け直されました)。 そのような場合、エントリーを使用する前に、(旧)ルータに参照をつけるすべてのDestination Cacheエントリーが再び次のホップ決断を実行しなければなりません。

   In some cases, link-specific information may indicate that a path to
   a neighbor has failed (e.g., the resetting of a virtual circuit).  In
   such cases, link-specific information may be used to purge Neighbor
   Cache entries before the Neighbor Unreachability Detection would do
   so.  However, link-specific information MUST NOT be used to confirm
   the reachability of a neighbor; such information does not provide
   end-to-end confirmation between neighboring IP layers.

いくつかの場合、リンク特有の情報は、隣人への経路が(例えば、仮想のサーキットのリセット)に失敗したのを示すかもしれません。 そのような場合、リンク特有の情報は、Neighbor Unreachability Detectionがそうする前にNeighbor Cacheエントリーを掃除するのに使用されるかもしれません。 しかしながら、隣人の可到達性を確認するのにリンク特有の情報を使用してはいけません。 そのような情報は隣接しているIP層の間に終わりから終わりへの確認を供給しません。

Narten, Nordmark & Simpson  Standards Track                    [Page 67]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[67ページ]。

8.  REDIRECT FUNCTION

8. 機能を向け直してください。

   This section describes the functions related to the sending and
   processing of Redirect messages.

このセクションはRedirectメッセージの送付と処理に関連する機能について説明します。

   Redirect messages are sent by routers to redirect a host to a better
   first-hop router for a specific destination or to inform hosts that a
   destination is in fact a neighbor (i.e., on-link).  The latter is
   accomplished by having the ICMP Target Address be equal to the ICMP
   Destination Address.

ルータで再直接のメッセージを送って、特定の目的地のために、より良い最初に、ホップルータにホストを向け直すか、または事実上、目的地が隣人(すなわち、リンクの)であることをホストに知らせます。 ICMP Target AddressがICMP Destination Addressと等しいのを持っていることによって、後者は達成されます。

   A router MUST be able to determine the link-local address for each of
   its neighboring routers in order to ensure that the target address in
   a Redirect message identifies the neighbor router by its link-local
   address.  For static routing this requirement implies that the next-
   hop router's address should be specified using the link-local address
   of the router.  For dynamic routing this requirement implies that all
   IPv6 routing protocols must somehow exchange the link-local addresses
   of neighboring routers.

Redirectメッセージのあて先アドレスがリンクローカルアドレスで隣人ルータを特定するのを確実にして、ルータはそれぞれの隣接しているルータのためにリンクローカルアドレスを決定できなければなりません。 スタティックルーティングのために、この要件は、次のホップルータのアドレスがルータのリンクローカルアドレスを使用することで指定されるべきであるのを含意します。 ダイナミックルーティングのために、この要件は、すべてのIPv6ルーティング・プロトコルがどうにか隣接しているルータのリンクローカルのアドレスを交換しなければならないのを含意します。

8.1.  Validation of Redirect Messages

8.1. 再直接のメッセージの合法化

   A host MUST silently discard any received Redirect message that does
   not satisfy all of the following validity checks:

ホストは静かに以下のバリディティチェックのすべてを満たさないどんな受信されたRedirectメッセージも捨てなければなりません:

   - IP Source Address is a link-local address.  Routers must use their
     link-local address as the source for Router Advertisement and
     Redirect messages so that hosts can uniquely identify routers.

- IP Source Addressはリンクローカルアドレスです。 ホストが唯一ルータを特定できて、ルータはRouter AdvertisementとRedirectメッセージにソースとしてそれらのリンクローカルアドレスを使用しなければなりません。

   - The IP Hop Limit field has a value of 255, i.e., the packet could
     not possibly have been forwarded by a router.

- IP Hop Limit分野には、255の値があります、すなわち、ルータはパケットを進めることができませんでした。

   - If the message includes an IP Authentication Header, the message
     authenticates correctly.

- メッセージはIP Authentication Header、メッセージを含んでいます。正しく、認証します。

   - ICMP Checksum is valid.

- ICMP Checksumは有効です。

   - ICMP Code is 0.

- ICMP Codeは0歳です。

   - ICMP length (derived from the IP length) is 40 or more octets.

- ICMPの長さ(IPの長さから、派生する)は40以上の八重奏です。

   - The IP source address of the Redirect is the same as the current
     first-hop router for the specified ICMP Destination Address.

- RedirectのIPソースアドレスは指定されたICMP Destination Addressのための現在の最初に、ホップルータと同じです。

   - The ICMP Destination Address field in the redirect message does not
     contain a multicast address.

- 再直接のメッセージのICMP Destination Address分野はマルチキャストアドレスを含んでいません。

Narten, Nordmark & Simpson  Standards Track                    [Page 68]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[68ページ]。

   - The ICMP Target Address is either a link-local address (when
     redirected to a router) or the same as the ICMP Destination Address
     (when redirected to the on-link destination).

- ICMP Target AddressはICMP Destination Addressとリンクローカルアドレス(ルータに向け直されると)か同じくらい(リンクの上の目的地に向け直されると)です。

   - All included options have a length that is greater than zero.

- すべての含まれているオプションには、ゼロ以上である長さがあります。

   The contents of the Reserved field, and of any unrecognized options
   MUST be ignored.  Future, backward-compatible changes to the protocol
   may specify the contents of the Reserved field or add new options;
   backward-incompatible changes may use different Code values.

Reserved分野、およびどんな認識されていないオプションのコンテンツもそうであるに違いありません。無視にされる。 プロトコルへの将来的で、後方コンパチブル変化は、Reserved分野のコンテンツを指定するか、または新しいオプションを加えるかもしれません。 後方の非互換な変化は異なったCode値を使用するかもしれません。

   The contents of any defined options that are not specified to be used
   with Redirect messages MUST be ignored and the packet processed as
   normal.  The only defined options that may appear are the Target
   Link-Layer Address option and the Redirected Header option.

Redirectメッセージと共に使用されるために指定されない少しの定義されたオプションのコンテンツも無視しなければなりませんでした、そして、パケットは標準として処理されました。 現れるかもしれない唯一の定義されたオプションが、Target Link-層のAddressオプションとRedirected Headerオプションです。

   A host MUST NOT consider a redirect invalid just because the Target
   Address of the redirect is not covered under one of the link's
   prefixes.  Part of the semantics of the Redirect message is that the
   Target Address is on-link.

再直接のTarget Addressがリンクの接頭語の1つの下で覆われているだけではないので、ホストは再直接の病人を考えてはいけません。 Redirectメッセージの意味論の一部はTarget Addressがリンクであるということです。

   A redirect that passes the validity checks is called a "valid
   redirect".

Aがバリディティチェックが呼ばれるそのパスを向け直す、「有効である、再直接、」

8.2.  Router Specification

8.2. ルータ仕様

   A router SHOULD send a redirect message, subject to rate limiting,
   whenever it forwards a packet that is not explicitly addressed to
   itself (i.e. a packet that is not source routed through the router)
   in which:

SHOULDがそれをパケットに送るときはいつも、レート制限を条件として再直接のメッセージを送るルータが中に明らかにそれ自体(すなわち、ルータを通して発送されたソースでないパケット)に記述されない、どれ、:

   - the Source Address field of the packet identifies a neighbor, and

- そしてパケットのSource Address分野が隣人を特定する。

   - the router determines that a better first-hop node resides on the
     same link as the sending node for the Destination Address of the
     packet being forwarded, and

- そしてルータが、より良い最初に、ホップノードが進められるパケットのDestination Addressのための送付ノードと同じリンクの上に住んでいることを決定する。

   - the Destination Address of the packet is not a multicast address,
     and

- そしてパケットのDestination Addressがマルチキャストアドレスでない。

   The transmitted redirect packet contains, consistent with the message
   format given in Section 4.5:

伝えられた再直接のパケットが含んでいる、セクション4.5で与えるメッセージ・フォーマットと一致しています:

   - In the Target Address field: the address to which subsequent
     packets for the destination SHOULD be sent.  If the target is a
     router, that router's link-local address MUST be used.  If the
     target is a host the target address field MUST be set to the same
     value as the Destination Address field.

- Target Addressでは、以下をさばいてください。 目的地のためにそれのその後のパケットにSHOULDを記述してください。送ります。 目標がルータであるなら、そのルータのリンクローカルアドレスを使用しなければなりません。 目標がホストであるなら、Destination Address分野と同じ値に目標アドレス・フィールドを設定しなければなりません。

Narten, Nordmark & Simpson  Standards Track                    [Page 69]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[69ページ]。

   - In the Destination Address field: the destination address of the
     invoking IP packet.

- Destination Addressでは、以下をさばいてください。 呼び出しているIPパケットの送付先アドレス。

   - In the options:

- オプションで:

        o Target Link-Layer Address option: link-layer address of the
          target, if known.

o Link-層のAddressオプションを狙ってください: 知られているなら、目標のアドレスをリンクで層にしてください。

        o Redirected Header: as much of the forwarded packet as can fit
          without the redirect packet exceeding 576 octets in size.

o ヘッダーを向け直します: 再直接のパケットがサイズにおける576の八重奏を超えていることのない発作であることができることのような進められたパケットの同じくらい多く。

   A router MUST limit the rate at which Redirect messages are sent, in
   order to limit the bandwidth and processing costs incurred by the
   Redirect messages when the source does not correctly respond to the
   Redirects, or the source chooses to ignore unauthenticated Redirect
   messages.  More details on the rate-limiting of ICMP error messages
   can be found in [ICMPv6].

ルータはRedirectメッセージが送られるレートを制限しなければなりません、情報筋が正しくRedirectsにこたえないか、またはソースが、unauthenticated Redirectメッセージを無視するのを選ぶとコストがRedirectメッセージで被った帯域幅と処理を制限するために。 [ICMPv6]でICMPエラーメッセージのレート制限に関するその他の詳細を見つけることができます。

   A router MUST NOT update its routing tables upon receipt of a
   Redirect.

ルータはRedirectを受け取り次第経路指定テーブルをアップデートしてはいけません。

8.3.  Host Specification

8.3. ホスト仕様

   A host receiving a valid redirect SHOULD update its Destination Cache
   accordingly so that subsequent traffic goes to the specified target.
   If no Destination Cache entry exists for the destination, an
   implementation SHOULD create such an entry.

有効な再直接のSHOULDを受け取るホストがそれに従って、Destination Cacheをアップデートするので、その後の交通は指定された目標に行きます。 いいえなら、なるDestination Cacheエントリーが存在する目的地、実現SHOULDはそのようなエントリーを作成します。

   If the redirect contains a Target Link-Layer Address option the host
   either creates or updates the Neighbor Cache entry for the target.
   In both cases the cached link-layer address is copied from the Target
   Link-Layer Address option.  If a Neighbor Cache entry is created for
   the target its reachability state MUST be set to STALE as specified
   in Section 7.3.3.  If a cache entry already existed and it is updated
   with a different link-layer address its reachability state MUST also
   be set to STALE.

再直接がTarget Link-層のAddressオプションを含んでいるなら、ホストは、目標のためのNeighbor Cacheエントリーを作成するか、またはアップデートします。 どちらの場合も、キャッシュされたリンクレイヤアドレスはTarget Link-層のAddressオプションからコピーされます。 Neighbor Cacheエントリーが目標のために作成されるなら、セクション7.3.3における指定されるとしてのSTALEに可到達性状態を設定しなければなりません。 また、キャッシュエントリーが既に存在して、異なったリンクレイヤアドレスでそれをアップデートするなら、可到達性状態をSTALEに設定しなければなりません。

   In addition, if the Target Address is the same as the Destination
   Address, the host MUST treat the destination as on-link and set the
   IsRouter field in the corresponding Neighbor Cache entry to FALSE.
   Otherwise it MUST set IsRouter to true.

さらに、Target AddressがDestination Addressと同じであるなら、ホストは、リンクのように目的地を扱って、FALSEへの対応するNeighbor CacheエントリーにIsRouter分野をはめ込まなければなりません。 さもなければ、それは本当にIsRouterを設定しなければなりません。

   Redirect messages apply to all flows that are being sent to a given
   destination.  That is, upon receipt of a Redirect for a Destination
   Address, all Destination Cache entries to that address should be
   updated to use the specified next-hop, regardless of the contents of
   the Flow Label field that appears in the Redirected Header option.

再直接のメッセージは与えられた目的地に送られるすべての流れに適用されます。 すなわち、Destination AddressのためのRedirectを受け取り次第、指定された次のホップを使用するためにそのアドレスへのすべてのDestination Cacheエントリーをアップデートするべきです、Redirected Headerオプションに現れるFlow Label野原のコンテンツにかかわらず。

Narten, Nordmark & Simpson  Standards Track                    [Page 70]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[70ページ]。

   A host MAY have a configuration switch that can be set to make it
   ignore a Redirect message that does not have an IP Authentication
   header.

ホストはそれにIP AuthenticationヘッダーがないRedirectメッセージを無視させるように設定できる設定スイッチを持っているかもしれません。

   A host MUST NOT send Redirect messages.

ホストはメッセージをRedirectに送ってはいけません。

9.  EXTENSIBILITY - OPTION PROCESSING

9. 伸展性--オプション処理

   Options provide a mechanism for encoding variable length fields,
   fields that may appear multiple times in the same packet, or
   information that may not appear in all packets.  Options can also be
   used to add additional functionality to future versions of ND.

オプションは可変長フィールド、同じパケットに複数の回現れるかもしれない野原、またはすべてのパケットに現れないかもしれない情報をコード化するのにメカニズムを提供します。 また、ノースダコタの将来のバージョンに追加機能性を追加するのにオプションを使用できます。

   In order to ensure that future extensions properly coexist with
   current implementations, all nodes MUST silently ignore any options
   they do not recognize in received ND packets and continue processing
   the packet.  All options specified in this document MUST be
   recognized.  A node MUST NOT ignore valid options just because the ND
   message contains unrecognized ones.

今後の拡大が適切に現在の実装と共存するのを確実にするために、すべてのノードが、静かに彼らが容認されたノースダコタパケットで認識しない少しのオプションも無視して、パケットを処理し続けなければなりません。 本書では指定されたすべてのオプションを認識しなければなりません。 ただノースダコタメッセージが認識されていないものを含んでいるので、ノードは妥当な選択肢を無視してはいけません。

   The current set of options is defined in such a way that receivers
   can process multiple options in the same packet independently of each
   other.  In order to maintain these properties future options SHOULD
   follow the simple rule:

現在のオプションは受信機が互いの如何にかかわらず同じパケットで複数のオプションを処理できるような方法で定義されます。 これらの特性を維持するために、将来のオプションSHOULDは簡単な規則に従います:

      The option MUST NOT depend on the presence or absence of any other
      options.  The semantics of an option should depend only on the
      information in the fixed part of the ND packet and on the
      information contained in the option itself.

オプションはいかなる他のオプションの存在か欠如にもよってはいけません。 オプションの意味論はノースダコタパケットの固定一部の情報だけと、そして、オプション自体に含まれた情報によるべきです。

   Adhering to the above rule has the following benefits:

上の規則を固く守るのにおいて、以下の利益があります:

  1) Receivers can process options independently of one another.  For
     example, an implementation can choose to process the Prefix
     Information option contained in a Router Advertisement message in a
     user-space process while the link-layer address option in the same
     message is processed by routines in the kernel.

1) 受信機はお互いの如何にかかわらずオプションを処理できます。 例えば、実装は、同じメッセージにおけるリンクレイヤアドレスオプションがカーネルにおけるルーチンで処理されますが、ユーザスペースプロセスにRouter Advertisementメッセージに含まれたPrefix情報オプションを処理するのを選ぶことができます。

  2) Should the number of options cause a packet to exceed a link's MTU,
     multiple packets can carry subsets of the options without any
     change in semantics.

2) パケットがオプションの数でリンクのMTUを超えているなら、複数のパケットが意味論における少しも変化なしでオプションの部分集合を運ぶことができます。

  3) Senders MAY send a subset of options in different packets.  For
     instance, if a prefix's Valid and Preferred Lifetime are high
     enough, it might not be necessary to include the Prefix Information
     option in every Router Advertisement.  In addition, different
     routers might send different sets of options.  Thus, a receiver
     MUST NOT associate any action with the absence of an option in a

3) Sendersは異なったパケットでオプションの部分集合を送るかもしれません。 例えば、接頭語のValidとPreferred Lifetimeが十分高いなら、あらゆるRouter AdvertisementのPrefix情報オプションを含むのは必要でないかもしれません。 さらに、異なったルータは異なったオプションを送るかもしれません。 したがって、受信機はaでのオプションの欠如に少しの動作も関連づけてはいけません。

Narten, Nordmark & Simpson  Standards Track                    [Page 71]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[71ページ]。

     particular packet.  This protocol specifies that receivers should
     only act on the expiration of timers and on the information that is
     received in the packets.

特定のパケット。 このプロトコルは、受信機がタイマの満了と、そして、パケットに受け取られる情報に作動するだけであるはずであると指定します。

   Options in Neighbor Discovery packets can appear in any order;
   receivers MUST be prepared to process them independently of their
   order.  There can also be multiple instances of the same option in a
   message (e.g., Prefix Information options).

Neighborディスカバリーパケットのオプションは順不同に現れることができます。 彼らの注文の如何にかかわらずそれらを処理するように受信機を準備しなければなりません。 また、メッセージ(例えば、Prefix情報オプション)には同じオプションの複数のインスタンスがあることができます。

   If the number of included options in a Router Advertisement causes
   the advertisement's size to exceed the link MTU, the router can send
   multiple separate advertisements each containing a subset of the
   options.

広告のサイズがRouter Advertisementの含まれているオプションの数でリンクMTUを超えているなら、ルータはそれぞれオプションの部分集合を含む複数の別々の広告を送ることができます。

   The amount of data to include in the Redirected Header option MUST be
   limited so that the entire redirect packet does not exceed 576
   octets.

Redirected Headerオプションに含んでいるデータ量を制限しなければならないので、全体の再直接のパケットは576の八重奏を超えていません。

   All options are a multiple of 8 octets of length, ensuring
   appropriate alignment without any "pad" options.  The fields in the
   options (as well as the fields in ND packets) are defined to align on
   their natural boundaries (e.g., a 16-bit field is aligned on a 16-bit
   boundary) with the exception of the 128-bit IP addresses/prefixes,
   which are aligned on a 64-bit boundary.  The link-layer address field
   contains an uninterpreted octet string; it is aligned on an 8-bit
   boundary.

少しも「パッド」オプションなしで適切な整列を確実にして、すべてのオプションが長さの8つの八重奏の倍数です。 オプション(ノースダコタパケットの分野と同様に)における分野は、128ビットのIPアドレス/接頭語を除いて、それらの固有の境界(例えば16ビットの分野は16ビットの境界で並べられる)に並ぶために定義されます。(接頭語は64ビットの境界で並べられます)。 リンクレイヤアドレス・フィールドは非解釈された八重奏ストリングを含んでいます。 それは8ビットの境界で並べられます。

   The size of an ND packet including the IP header is limited to the
   link MTU (which is at least 576 octets).  When adding options to an
   ND packet a node MUST NOT exceed the link MTU.

IPヘッダーを含むノースダコタパケットのサイズはリンクMTU(少なくとも576の八重奏である)に制限されます。 ノースダコタパケットにオプションを加えるとき、ノードはリンクMTUを超えてはいけません。

   Future versions of this protocol may define new option types.
   Receivers MUST silently ignore any options they do not recognize and
   continue processing the message.

このプロトコルの将来のバージョンは新しいオプションタイプを定義するかもしれません。 受信機は、静かに彼らが認識しない少しのオプションも無視して、メッセージを処理し続けなければなりません。

10.  PROTOCOL CONSTANTS

10. プロトコル定数

Router constants:

ルータ定数:

         MAX_INITIAL_RTR_ADVERT_INTERVAL  16 seconds

16秒のマックス_INITIAL_RTR_ADVERT_INTERVAL

         MAX_INITIAL_RTR_ADVERTISEMENTS    3 transmissions

マックス_INITIAL_RTR_ADVERTISEMENTS3トランスミッション

         MAX_FINAL_RTR_ADVERTISEMENTS      3 transmissions

マックス_FINAL_RTR_ADVERTISEMENTS3トランスミッション

         MIN_DELAY_BETWEEN_RAS             3 seconds

3秒のMIN_DELAY_BETWEEN_RAS

         MAX_RA_DELAY_TIME                 .5 seconds

.5秒のマックス_RA_DELAY_タイム誌

Narten, Nordmark & Simpson  Standards Track                    [Page 72]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[72ページ]。

Host constants:

定数を接待してください:

         MAX_RTR_SOLICITATION_DELAY        1 second

マックス_RTR_SOLICITATION_DELAY1 2番目

         RTR_SOLICITATION_INTERVAL         4 seconds

4秒のRTR_SOLICITATION_INTERVAL

         MAX_RTR_SOLICITATIONS             3 transmissions

マックス_RTR_SOLICITATIONS3トランスミッション

Node constants:

ノード定数:

         MAX_MULTICAST_SOLICIT             3 transmissions

マックス_MULTICAST_SOLICIT3トランスミッション

         MAX_UNICAST_SOLICIT               3 transmissions

マックス_UNICAST_SOLICIT3トランスミッション

         MAX_ANYCAST_DELAY_TIME            1 second

マックス_ANYCAST_DELAY_タイム誌1 2番目

         MAX_NEIGHBOR_ADVERTISEMENT        3 transmissions

マックス_NEIGHBOR_ADVERTISEMENT3トランスミッション

         REACHABLE_TIME               30,000 milliseconds

REACHABLE_タイム誌3万ミリセカンド

         RETRANS_TIMER                 1,000 milliseconds

RETRANS_TIMER1,000ミリセカンド

         DELAY_FIRST_PROBE_TIME            5 seconds

5秒のDELAY_FIRST_PROBE_タイム誌

         MIN_RANDOM_FACTOR                 .5

_の無作為の分_は.5を因数分解します。

         MAX_RANDOM_FACTOR                 1.5

最大の_の無作為の_要素1.5

   Additional protocol constants are defined with the message formats in
   Section 4.

追加議定書定数はメッセージ・フォーマットでセクション4で定義されます。

   All protocol constants are subject to change in future revisions of
   the protocol.

プロトコル定数を条件としているすべてがこれから、プロトコルの改正を変えます。

   The constants in this specification may be overridden by specific
   documents that describe how IPv6 operates over different link layers.
   This rule allows Neighbor Discovery to operate over links with widely
   varying performance characteristics.

この仕様による定数はIPv6が異なったリンクレイヤの上でどう作動するかを説明する特定のドキュメントによってくつがえされるかもしれません。 この規則で、Neighborディスカバリーは広く性能の特性を変えるとのリンクの上に作動します。

11.  SECURITY CONSIDERATIONS

11. セキュリティ問題

   Neighbor Discovery is subject to attacks that cause IP packets to
   flow to unexpected places.  Such attacks can be used to cause denial
   of service but also allow nodes to intercept and optionally modify
   packets destined for other nodes.

隣人ディスカバリーはIPパケットが予期していなかった場所に注ぐ攻撃を受けることがあります。 サービスの否定を引き起こしますが、ノードが他のノードのために運命づけられたパケットを妨害して、任意に変更するのをまた許容するのにそのような攻撃を使用できます。

   The protocol reduces the exposure to such threats in the absence of
   authentication by ignoring ND packets received from off-link senders.

プロトコルはオフリンク送付者から受け取られたノースダコタパケットを無視するのによる認証がないときそのような脅威に暴露を減少させます。

Narten, Nordmark & Simpson  Standards Track                    [Page 73]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[73ページ]。

   The Hop Limit field of all received packets is verified to contain
   255, the maximum legal value.  Because routers decrement the Hop
   Limit on all packets they forward, received packets containing a Hop
   Limit of 255 must have originated from a neighbor.

すべての容認されたパケットのHop Limit分野は、255、最大の正当な値を含むように確かめられます。 ルータがそれらが進めるすべてのパケットでHop Limitを減少させるので、255のHop Limitを含む容認されたパケットは隣人から発したに違いありません。

   The trust model for redirects is the same as in IPv4.  A redirect is
   accepted only if received from the same router that is currently
   being used for that destination.  It is natural to trust the routers
   on the link.  If a host has been redirected to another node (i.e.,
   the destination is on-link) there is no way to prevent the target
   from issuing another redirect to some other destination.  However,
   this exposure is no worse than it was; the target host, once
   subverted, could always act as a hidden router to forward traffic
   elsewhere.

信頼がモデル化する、向け直す、コネと同じくらいはIPv4ですか? A再直接、現在その目的地に使用されているのと同じルータから受け取る場合にだけ、受け入れます。 リンクの上にルータを信じるのは当然です。 ホストが別のノードに向け直されたなら(すなわち、目的地はリンクです)、目標がある他の目的地に再直接で別のものを発行するのを防ぐ方法が全くありません。 しかしながら、この暴露はそれほど悪くはありません。 一度打倒された目標ホストは、トラフィックをほかの場所に送るために隠されたルータとしていつも務めることができました。

   The protocol contains no mechanism to determine which neighbors are
   authorized to send a particular type of message e.g.  Router
   Advertisements; any neighbor, presumably even in the presence of
   authentication, can send Router Advertisement messages thereby being
   able to cause denial of service.  Furthermore, any neighbor can send
   proxy Neighbor Advertisements as well as unsolicited Neighbor
   Advertisements as a potential denial of service attack.

プロトコルはどの隣人が例えば、メッセージRouter Advertisementsの特定のタイプを送るのに権限を与えられるかを決定するメカニズムを全く含んでいません。 おそらく認証があるときさえ、どんな隣人もその結果、Router Advertisementメッセージがサービスの否定を引き起こすことができるのをさせることができます。 その上、どんな隣人もサービス攻撃の潜在的否定としての求められていないNeighbor Advertisementsと同様にプロキシNeighbor Advertisementsを送ることができます。

   Neighbor Discovery protocol packet exchanges can be authenticated
   using the IP Authentication Header [IPv6-AUTH].  A node SHOULD
   include an Authentication Header when sending Neighbor Discovery
   packets if a security association for use with the IP Authentication
   Header exists for the destination address.  The security associations
   may have been created through manual configuration or through the
   operation of some key management protocol.

IP Authentication Header[IPv6-AUTH]を使用することで隣人ディスカバリープロトコルパケット交換を認証できます。 IP Authentication Headerとの使用のためのセキュリティ協会が送付先アドレスのために存在するならディスカバリーパケットをNeighborに送るとき、ノードSHOULDはAuthentication Headerを含んでいます。 セキュリティ協会は手動の構成を通して、または、何らかのかぎ管理プロトコルの操作を通して創設されたかもしれません。

   Received Authentication Headers in Neighbor Discovery packets MUST be
   verified for correctness and packets with incorrect authentication
   MUST be ignored.

正当性のためにNeighborディスカバリーパケットの容認されたAuthentication Headersについて確かめなければなりません、そして、不正確な認証があるパケットを無視しなければなりません。

   It SHOULD be possible for the system administrator to configure a
   node to ignore any Neighbor Discovery messages that are not
   authenticated using either the Authentication Header or Encapsulating
   Security Payload.  The configuration technique for this MUST be
   documented.  Such a switch SHOULD default to allowing unauthenticated
   messages.

それ、SHOULD、システム管理者がAuthentication HeaderかEncapsulating Security有効搭載量を使用することで認証されないどんなNeighborディスカバリーメッセージも無視するためにノードを構成するのにおいて、可能であってください。 これのための構成のテクニックを記録しなければなりません。 許容へのそのようなスイッチSHOULDデフォルトはメッセージを非認証しました。

   Confidentiality issues are addressed by the IP Security Architecture
   and the IP Encapsulating Security Payload documents [IPv6-SA, IPv6-
   ESP].

IP Security ArchitectureとIP Encapsulating Security有効搭載量ドキュメント[IPv6IPv6-SA、超能力]によって秘密性問題は扱われます。

Narten, Nordmark & Simpson  Standards Track                    [Page 74]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[74ページ]。

REFERENCES

参照

  [ADDRCONF] Thomson, S., and T. Narten, "IPv6 Address
          Autoconfiguration", RFC 1971, August 1996.

[ADDRCONF] トムソン、S.とT.Narten、「IPv6アドレス自動構成」、RFC1971、1996年8月。

  [ADDR-ARCH] Deering, S., and R. Hinden, Editors, "IP Version 6
          Addressing Architecture", RFC 1884, January 1996.

[ADDR-アーチ] デアリング、S.とR.Hinden、エディターズ、「IPバージョン6アドレッシング体系」、RFC1884、1996年1月。

  [ANYCST] Partridge, C., Mendez, T., and W. Milliken, "Host
          Anycasting Service", RFC 1546, November 1993.

[ANYCST] ヤマウズラとC.とメンデス、T.とW.ミリケン、「ホストAnycastingサービス」、RFC1546、1993年11月。

  [ARP] Plummer, D., "An Ethernet Address Resolution Protocol", STD
          37, RFC 826, November 1982.

[ARP] プラマー、D.、「イーサネットアドレス解決プロトコル」、STD37、RFC826、1982年11月。

  [HR-CL] Braden, R., Editor, "Requirements for Internet Hosts --
          Communication Layers", STD 3, RFC 1122, October 1989.

[時間Cl] ブレーデン、R.、エディタ、「インターネットホストのための要件--コミュニケーションは層にする」、STD3、RFC1122、10月1989日

  [ICMPv4] Postel, J., "Internet Control Message Protocol", STD 5, RFC
          792, September 1981.

[ICMPv4] ポステル、J.、「インターネット・コントロール・メッセージ・プロトコル」、STD5、RFC792、1981年9月。

  [ICMPv6] Conta, A., and S. Deering, "Internet Control Message
          Protocol (ICMPv6) for the Internet Protocol Version 6
          (IPv6)", RFC 1885, January 1996.

[ICMPv6] コンタ、A.、およびS.デアリング、「インターネットへのインターネット・コントロール・メッセージ・プロトコル(ICMPv6)はバージョン6(IPv6)について議定書の中で述べます」、RFC1885、1996年1月。

  [IPv6] Deering, S., and R. Hinden, Editors, "Internet Protocol,
          Version 6 (IPv6) Specification", RFC 1883, January, 1996.

[IPv6] デアリング、S.とR.Hinden、エディターズ、「インターネットプロトコル、バージョン6(IPv6)仕様」RFC1883、1月、1996

  [IPv6-ETHER] Crawford, M., "A Method for the Transmission of IPv6
          Packets over Ethernet Networks", RFC 1972, August 1996.

[IPv6-エーテル] クロフォード、M.、「イーサネットネットワークの上のIPv6パケットのトランスミッションのためのメソッド」、RFC1972、1996年8月。

  [IPv6-SA] Atkinson, R., "Security Architecture for the Internet
          Protocol", RFC 1825, August 1995.

[IPv6-SA] アトキンソン、R.、「インターネットプロトコルのためのセキュリティー体系」、RFC1825、1995年8月。

  [IPv6-AUTH] Atkinson, R., "IP Authentication Header", RFC 1826,
          August 1995.

[IPv6-AUTH] アトキンソン、R.、「IP認証ヘッダー」、RFC1826、1995年8月。

  [IPv6-ESP] Atkinson, R., "IP Encapsulating Security Payload (ESP)",
          RFC 1827, August 1995.

[IPv6-超能力] アトキンソン、R.、「セキュリティが有効搭載量(超能力)であるとカプセル化するIP」、RFC1827、1995年8月。

  [RDISC] Deering, S., "ICMP Router Discovery Messages", RFC 1256,
          September 1991.

[RDISC] デアリング、S.、「ICMPルータ発見メッセージ」、RFC1256、1991年9月。

  [SH-MEDIA] Braden, R., Postel, J., and Y. Rekhter, "Internet
          Architecture Extensions for Shared Media", RFC 1620, May
          1994.

[SH-メディア]ブレーデン(R.とポステル、J.とY.Rekhter、「共有されたメディアのためのインターネットアーキテクチャ拡大」RFC1620)は1994がそうするかもしれません。

  [ASSIGNED] Reynolds, J., and J. Postel, "ASSIGNED NUMBERS", STD 2,
          RFC 1700, October 1994.

[割り当てられる]のレイノルズ、J.とJ.ポステル、「規定番号」STD2、1994年10月のRFC1700。

Narten, Nordmark & Simpson  Standards Track                    [Page 75]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[75ページ]。

  [SYNC] S. Floyd, V. Jacobsen, "The Synchronization of Periodic Routing
          Messages", IEEE/ACM Transactions on Networking, April 1994.
          ftp://ftp.ee.lbl.gov/papers/sync_94.ps.Z

[同期します] S.フロイド対ジェイコブセン、「周期的なルーティング・メッセージの同期」、ネットワークでのIEEE/ACMトランザクション、1994年4月の ftp://ftp.ee.lbl.gov/papers/sync_94.ps.Z

AUTHORS' ADDRESSES

作者のアドレス

     Erik Nordmark                Thomas Narten
     Sun Microsystems, Inc.       IBM Corporation
     2550 Garcia Ave              P.O. Box 12195
     Mt. View, CA 94041           Research Triangle Park, NC 27709-2195
     USA                          USA

エリックNordmarkトーマスNartenサン・マイクロシステムズ・インクIBM社2550ガルシアAve私書箱12195View山、カリフォルニア 94041は三角形公園、NC27709-2195米国米国について研究します。

     Phone: +1 415 786 5166       Phone: +1 919 254 7798
     Fax:   +1 415 786 5896       Fax:   +1 919 254 4027
     EMail: nordmark@sun.com      EMail: narten@vnet.ibm.com

以下に電話をしてください。 +1 5166が電話をする415 786: +1 919 254、7798Fax: +1 415 786、5896Fax: +1 4027年の919 254メール: nordmark@sun.com メール: narten@vnet.ibm.com

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071
     USA

ウィリアムアレンのシンプソン空想家コンピュータシステムズのコンサルタント業務1384フォンテーヌマディソンの高さ、ミシガン48071米国

     EMail: Bill.Simpson@um.cc.umich.edu
            bsimpson@MorningStar.com

メール: Bill.Simpson@um.cc.umich.edu bsimpson@MorningStar.com

Narten, Nordmark & Simpson  Standards Track                    [Page 76]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[76ページ]。

APPENDIX A: MULTIHOMED HOSTS

付録A: MULTIHOMEDホスト

   There are a number of complicating issues that arise when Neighbor
   Discovery is used by hosts that have multiple interfaces.  This
   section does not attempt to define the proper operation of multihomed
   hosts with regard to Neighbor Discovery.  Rather, it identifies
   issues that require further study.  Implementors are encouraged to
   experiment with various approaches to making Neighbor Discovery work
   on multihomed hosts and to report their experiences.

Neighborディスカバリーが複数のインタフェースを持っているホストによって使用されるとき起こる多くの複雑にする問題があります。 このセクションは、Neighborディスカバリーに関して「マルチ-家へ帰」っているホストの適切な操作を定義するのを試みません。 むしろ、それはさらなる研究を必要とする問題を特定します。 作成者は、Neighborディスカバリーを「マルチ-家へ帰」っているホストに働かせることへの様々なアプローチを実験して、彼らの経験を報告するよう奨励されます。

   If a multihomed host receives Router Advertisements on all of its
   interfaces, it will (probably) have learned on-link prefixes for the
   addresses residing on each link.  When a packet must be sent through
   a router, however, selecting the "wrong" router can result in a
   suboptimal or non-functioning path.  There are number of issues to
   consider:

「マルチ-家へ帰」っているホストがインタフェースのすべてにRouter Advertisementsを受け取るなら、それは各リンクの上にあるアドレスのために(たぶん)リンクの上の接頭語を学んでしまうでしょう。 しかしながら、ルータを通してパケットを送らなければならないとき、「間違った」ルータを選択すると、準最適の、または、非機能している経路はもたらされることができます。 考える問題の数があります:

  1) In order for a router to send a redirect, it must determine that
     the packet it is forwarding originates from a neighbor.  The
     standard test for this case is to compare the source address of the
     packet to the list of on-link prefixes associated with the
     interface on which the packet was received.  If the originating
     host is multihomed, however, the source address it uses may belong
     to an interface other than the interface from which it was sent.
     In such cases, a router will not send redirects, and suboptimal
     routing is likely.  In order to be redirected, the sending host
     must always send packets out the interface corresponding to the
     outgoing packet's source address.  Note that this issue never
     arises with non-multihomed hosts; they only have one interface.

1) ルータが再直接でaを送るように、それは、それが進めているパケットが隣人から発することを決定しなければなりません。 標準のテストはこのような場合リンクの上のパケットが受け取られたインタフェースに関連している接頭語のリストにパケットのソースアドレスをたとえることです。 しかしながら、送信元ホストが「マルチ-家へ帰」るなら、それが使用するソースアドレスはそれが送られたインタフェース以外のインタフェースに属すかもしれません。 そのような場合、ルータが発信しない、向け直す、ルーティングがありそうであることを準最適です。 向け直されるために、送付ホストは出発しているパケットのソースアドレスに対応するインタフェースからパケットをいつも送らなければなりません。 この問題が非「マルチ-家へ帰」っているホストと共に決して起こらないことに注意してください。 彼らには、1つのインタフェースしかありません。

  2) If the selected first-hop router does not have a route at all for
     the destination, it will be unable to deliver the packet.  However,
     the destination may be reachable through a router on one of the
     other interfaces.  Neighbor Discovery does not address this
     scenario; it does not arise in the non-multihomed case.

2) 選択された最初に、ホップルータが全くルートを目的地に持っていないと、パケットを提供できないでしょう。 しかしながら、目的地は他のインタフェースの1つでルータを通して届いているかもしれません。 隣人ディスカバリーはこのシナリオを扱いません。 それは非「マルチ-家へ帰」っている場合で起こりません。

  3) Even if the first-hop router does have a route for a destination,
     there may be a better route via another interface.  No mechanism
     exists for the multihomed host to detect this situation.

3) 最初に、ホップルータに目的地へのルートがあっても、別のインタフェースを通して、より良いルートがあるかもしれません。 「マルチ-家へ帰」っているホストがこの状況を検出するように、メカニズムは全く存在していません。

   If a multihomed host fails to receive Router Advertisements on one or
   more of its interfaces, it will not know (in the absence of
   configured information) which destinations are on-link on the
   affected interface(s).  This leads to a number of problems:

「マルチ-家へ帰」っているホストがインタフェースの1つ以上にRouter Advertisementsを受け取らないと、それは、影響を受けるインタフェースで目的地がリンクのどれであるかを知らないでしょう(構成された情報がないとき)。 これは多くの問題を引き起こします:

  1) If no Router Advertisement is received on any interfaces, a
     multihomed host will have no way of knowing which interface to send
     packets out on, even for on-link destinations.  Under similar

1) どんなインタフェースにもRouter Advertisementを全く受け取らないと、「マルチ-家へ帰」っているホストはパケットを出すどのインタフェースを知るか方法を全くオンに持たないでしょう、リンクの上の目的地にさえ。 下の同様です。

Narten, Nordmark & Simpson  Standards Track                    [Page 77]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[77ページ]。

     conditions in the non-multihomed host case, a node treats all
     destinations as residing on-link, and communication proceeds.  In
     the multihomed case, however, additional information is needed to
     select the proper outgoing interface.  Alternatively, a node could
     attempt to perform address resolution on all interfaces, a step
     involving significant complexity that is not present in the non-
     multihomed host case.

非「マルチ-家へ帰」っているホスト事件の状態であり、ノードは住んでいるオンリンクとしてすべての目的地を扱います、そして、コミュニケーションは続きます。 しかしながら、「マルチ-家へ帰」っている場合では、追加情報が、適切な外向的なインタフェースを選択するのに必要です。 あるいはまた、ノードは、すべてのインタフェース(非「マルチ-家へ帰」っているホスト事件に存在していない重要な複雑さを伴うステップ)にアドレス解決を実行するのを試みるかもしれません。

  2) If Router Advertisements are received on some, but not all
     interfaces, a multihomed host could choose to only send packets out
     on the interfaces on which it has received Router Advertisements.
     A key assumption made here, however, is that routers on those other
     interfaces will be able to route packets to the ultimate
     destination, even when those destinations reside on the subnet to
     which the sender connects, but has no on-link prefix information.
     Should the assumption be false, communication would fail.  Even if
     the assumption holds, packets will traverse a sub-optimal path.

2) すべてのインタフェースではなく、いくつかにRouter Advertisementsを受け取るなら、「マルチ-家へ帰」っているホストは、それがRouter Advertisementsを受けたインタフェースにパケットを出すだけであるのを選ぶかもしれません。 しかしながら、ここでされた主要な仮定はそれらの他のインタフェースのルータがパケットを最終仕向地に発送できるということです、それらの目的地が送付者がリンクの接頭語情報を全く接続しますが、持っていないサブネットに住んでいると。 仮定が誤っているなら、コミュニケーションは失敗するでしょう。 仮定が成立しても、パケットはサブ最適経路を横断するでしょう。

APPENDIX B: FUTURE EXTENSIONS

付録B: 今後の拡大

Possible extensions for future study are:

今後の研究のための可能な拡大は以下の通りです。

 o Using dynamic timers to be able to adapt to links with widely varying
   delay.  Measuring round trip times, however, requires acknowledgments
   and sequence numbers in order to match received Neighbor
   Advertisements with the actual Neighbor Solicitation that triggered
   the advertisement.  Implementors wishing to experiment with such a
   facility could do so in a backwards-compatible way by defining a new
   option carrying the necessary information.  Nodes not understanding
   the option would simply ignore it.

o 広く遅れを変えるとのリンクに順応できるようにダイナミックなタイマを使用します。 しかしながら、周遊旅行時間を測定するのは、広告の引き金となった実際のNeighbor Solicitationに容認されたNeighbor Advertisementsを合わせるために承認と一連番号を必要とします。 そのような施設を実験したがっている作成者は、必要事項を運びながら、新しいオプションを定義することによって、そう後方にコンパチブル方法ですることができるでしょう。 オプションを理解していないノードが単にそれを無視するでしょう。

 o Adding capabilities to facilitate the operation over links that
   currently require hosts to register with an address resolution
   server.  This could for instance enable routers to ask hosts to send
   them periodic unsolicited advertisements.  Once again this can be
   added using a new option sent in the Router Advertisements.

o そんなに現在リンクの上の操作を容易にする付加能力は、ホストがアドレス解決サーバとともに記名するのを必要とします。例えば、これは、ルータが、周期的な未承諾広告を彼らに送るようにホストに頼むのを可能にするかもしれません。 もう一度、Router Advertisementsで送られた新しいオプションを使用することでこれを加えることができます。

 o Adding additional procedures for links where asymmetric and non-
   transitive reachability is part of normal operations.  Such
   procedures might allow hosts and routers to find usable paths on,
   e.g., radio links.

o 非対称であって非遷移的であるところで追加手順をリンクに加えて、可到達性は通常操作の一部です。 ホストとルータによって、そのような手順で使用可能な経路がオンであることをわかることができるかもしれません、例えば、ラジオはリンクされます。

APPENDIX C: STATE MACHINE FOR THE REACHABILITY STATE

付録C: 可到達性状態への州のマシン

   This appendix contains a summary of the rules specified in Sections
   7.2 and 7.3.  This document does not mandate that implementations
   adhere to this model as long as their external behavior is consistent
   with that described in this document.

この付録はセクション7.2と7.3で指定された規則の概要を含んでいます。 このドキュメントは、彼らの外部の振舞いが本書では説明されるそれと一致している限り、実装がこのモデルを固く守るのを強制しません。

Narten, Nordmark & Simpson  Standards Track                    [Page 78]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[78ページ]。

   When performing address resolution and Neighbor Unreachability
   Detection the following state transitions apply using the conceptual
   model:

アドレス解決とNeighbor Unreachability Detectionを実行するとき、以下の状態遷移は概念モデルを使用することで適用されます:

State           Event                   Action                New state

州のEvent Action New状態

-               Packet to send.         Create entry.         INCOMPLETE
                                        Send multicast NS.
                                        Start retransmit timer

- 送るパケット。 エントリーを作成してください。 INCOMPLETE SendマルチキャストNS。 再送信タイマを始動してください。

INCOMPLETE      Retransmit timeout,     Retransmit NS         INCOMPLETE
                less than N             Start retransmit timer
                retransmissions.

INCOMPLETE Retransmitタイムアウト、N Startがタイマ「再-トランスミッション」を再送するより少ないRetransmit NS INCOMPLETE。

INCOMPLETE      Retransmit timeout,     Discard entry         -
                N or more               Send ICMP error
                retransmissions.

INCOMPLETE Retransmitタイムアウト、Discardエントリー--N Send ICMP誤り「再-トランスミッション」。

INCOMPLETE      NA, Solicited=0,        Record link-layer     STALE
                Override=any            address.  Send queued
                                        packets.

INCOMPLETE NA、Solicited=0、RecordリンクレイヤSTALE Overrideはどんなアドレスとも等しいです。 列に並ばせられたパケットを送ってください。

INCOMPLETE      NA, Solicited=1,        Record link-layer     REACHABLE
                Override=any            address.  Send queued
                                        packets.

INCOMPLETE NA、Solicited=1、RecordリンクレイヤREACHABLE Overrideはどんなアドレスとも等しいです。 列に並ばせられたパケットを送ってください。

!INCOMPLETE     NA, Solicited=1,        -                     REACHABLE
                Override=0

不完全なNa、請求された=1--届いているオーバーライド=0

!INCOMPLETE     NA, Solicited=1,        Record link-layer     REACHABLE
                Override=1              address.

INCOMPLETE NA、Solicited=1、RecordリンクレイヤREACHABLE Override=1アドレス。

!INCOMPLETE     NA, Solicited=0,        -                     STALE
                Override=0

不完全なNa、請求された=0--聞き古したオーバーライド=0

!INCOMPLETE     NA, Solicited=0,        Record link-layer     STALE
                Override=1              address.

INCOMPLETE NA、Solicited=0、RecordリンクレイヤSTALE Override=1アドレス。

!INCOMPLETE     upper-layer reachability  -                   REACHABLE
                confirmation

INCOMPLETE上側の層の可到達性--REACHABLE確認

REACHABLE       timeout, more than      -                     STALE
                N seconds since
                reachability confirm.

さらにREACHABLEタイムアウト、--可到達性以来の秒が確認するSTALE N。

STALE           Sending packet          Start delay timer     DELAY

STALE SendingパケットStartディレイタイマDELAY

DELAY           Delay timeout           Send unicast NS probe PROBE

DELAY DelayタイムアウトSendユニキャストNSはPROBEを調べます。

Narten, Nordmark & Simpson  Standards Track                    [Page 79]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[79ページ]。

                                        Start retransmit timer

再送信タイマを始動してください。

PROBE           Retransmit timeout,     Retransmit NS         PROBE
                less than N
                retransmissions.

PROBE Retransmitタイムアウト、N「再-トランスミッション」より少ないRetransmit NS PROBE。

PROBE           Retransmit timeout,     Discard entry         -
                N or more
                retransmissions.

PROBE Retransmitタイムアウト、Discardエントリー--N「再-トランスミッション」。

   The state transitions for receiving unsolicited information other
   than Neighbor Advertisement messages apply to either the source of
   the packet (for Neighbor Solicitation, Router Solicitation, and
   Router Advertisement messages) or the target address (for Redirect
   messages) as follows:

Neighbor Advertisementメッセージ以外の求められていない情報を受け取るための状態遷移は以下のパケットの源(Neighbor Solicitation、Router Solicitation、およびRouter Advertisementメッセージのための)かあて先アドレス(Redirectメッセージのための)のどちらかに適用されます:

State           Event                   Action                New state

州のEvent Action New状態

-               NS, RS, RA, Redirect    Create entry.         STALE

- NS、RS、RA、Redirect Createエントリー。 古くさくなってください。

INCOMPLETE      NS, RS, RA, Redirect    Record link-layer     STALE
                                        address.  Send queued
                                        packets.

INCOMPLETE NS、RS、Redirect RecordリンクレイヤSTALEが扱うRA。 列に並ばせられたパケットを送ってください。

!INCOMPLETE     NS, RS, RA, Redirect    Update link-layer     STALE
                Different link-layer    address
                address than cached.

INCOMPLETE NS、RS、RA、Redirect UpdateリンクレイヤSTALE Differentリンクレイヤはキャッシュされるよりアドレスを扱います。

!INCOMPLETE     NS, RS, RA, Redirect    -                     unchanged
                Same link-layer
                address as cached.

INCOMPLETE NS、RS、RA、Redirect--変わりのないSameはキャッシュされるようにアドレスをリンクで層にします。

APPENDIX D: IMPLEMENTATION ISSUES

付録D: 導入問題

Appendix D.1: Reachability confirmations

付録D.1: 可到達性確認

   Neighbor Unreachability Detection requires explicit confirmation that
   a forward-path is functioning properly.  To avoid the need for
   Neighbor Solicitation probe messages, upper layer protocols should
   provide such an indication when the cost of doing so is small.
   Reliable connection-oriented protocols such as TCP are generally
   aware when the forward-path is working.  When TCP sends (or receives)
   data, for instance, it updates its window sequence numbers, sets and
   cancels retransmit timers, etc.  Specific scenarios that usually
   indicate a properly functioning forward-path include:

隣人Unreachability Detectionは、適切に機能しながら、フォワードパスがそうである明白な確認を必要とします。 そうする費用がわずかであるときに、Neighbor Solicitation徹底的調査メッセージの必要性を避けるために、上側の層のプロトコルはそのような指示を提供するべきです。 信頼できる接続指向のプロトコル、フォワードパスであるときに、一般に、TCPが意識しているようにそのようなものは働いています。 TCPがデータを送って(または、受信します)、例えば、窓の一連番号をアップデートして、セットして、再送信タイマを取り消すとき、などです。 通常、適切に機能しているフォワードパスを示す特定のシナリオは:

- Receipt of an acknowledgement that covers a sequence number (e.g.,
   data) not previously acknowledged indicates that the forward path was

- 以前に承認されなかった一連番号(例えば、データ)をカバーする承認の領収書は、フォワードパスがそうであったのを示します。

Narten, Nordmark & Simpson  Standards Track                    [Page 80]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[80ページ]。

   working at the time the data was sent.

当時、データを扱うのを送りました。

- Completion of the initial three-way handshake is a special case of the
   previous rule; although no data is sent during the handshake, the SYN
   flags are counted as data from the sequence number perspective.  This
   applies to both the SYN+ACK for the active open the ACK of that
   packet on the passively opening peer.

- 初期の3方向ハンドシェイクの完成は前の規則の特別なケースです。 握手の間データを全く送りませんが、一連番号見解からのデータにSYN旗をみなします。 アクティブが受け身に初めである同輩の上でそのパケットのACKを開くので、これはSYN+ACKを両方に適用します。

- Receipt of new data (i.e., data not previously received) indicates
   that the forward-path was working at the time an acknowledgement was
   sent that advanced the peer's send window that allowed the new data
   to be sent.

- 新しいデータ(すなわち、以前に受け取られなかったデータ)の領収書は、進められて、同輩のものが新しいデータが送られるのを許容した窓を送るという承認を送ったときフォワードパスが働いていたのを示します。

   To minimize the cost of communicating reachability information
   between the TCP and IP layers, an implementation may wish to rate-
   limit the reachability confirmations its sends IP.  One possibility
   is to process reachability only every few packets.  For example, one
   might update reachability information once per round trip time, if an
   implementation only has one round trip timer per connection.  For
   those implementations that cache Destination Cache entries within
   control blocks, it may be possible to update the Neighbor Cache entry
   directly (i.e., without an expensive lookup) once the TCP packet has
   been demultiplexed to its corresponding control block.  For other
   implementation it may be possible to piggyback the reachability
   confirmation on the next packet submitted to IP assuming that the
   implementation guards against the piggybacked confirmation becoming
   stale when no packets are sent to IP for an extended period of time.

TCPとIP層の間の可到達性情報を伝える費用を最小にするために、実装が、可到達性が確認であることをレート限界に願うかもしれない、それ、IPを送ります。 1つの可能性はあらゆるわずかなパケットだけ単位で可到達性を処理することです。 例えば、1つは周遊旅行時間に一度可到達性情報をアップデートするかもしれません、実装に1接続あたり1個の周遊旅行タイマしかないなら。 TCPパケットがいったん対応する制御ブロックに反多重送信されると、制御ブロックの中でDestination Cacheエントリーをキャッシュするそれらの実装に、直接(すなわち、高価なルックアップなしで)Neighbor Cacheエントリーをアップデートするのは可能であるかもしれません。 他の実装に、実装が時間の長期間の間パケットを全くIPに送らないとき聞き古したであるなる便乗している確認に用心すると仮定するIPに提出された次のパケットの上で可到達性確認を背負うのは可能であるかもしれません。

   TCP must also guard against thinking "stale" information indicates
   current reachability.  For example, new data received 30 minutes
   after a window has opened up does not constitute a confirmation that
   the path is currently working.  In merely indicates that 30 minutes
   ago the window update reached the peer i.e. the path was working at
   that point in time.  An implementation must also take into account
   TCP zero-window probes that are sent even if the path is broken and
   the window update did not reach the peer.

また、TCPは、「聞き古した」情報が現在の可到達性を示すと思わないように警備しなければなりません。 例えば、窓が開いた30分後に受け取られた新しいデータは経路が現在扱っている確認を構成しません。 30分前に、窓のアップデートが同輩に届いて、すなわち、経路が時間内にその時働いていたのを、コネは単に示します。 また、実装は経路が起伏が多く、窓のアップデートが同輩に届かなかったとしても送られるTCP無の窓の探測装置を考慮に入れなければなりません。

   For UDP based applications (RPC, DNS) it is relatively simple to make
   the client send reachability confirmations when the response packet
   is received.  It is more difficult and in some cases impossible for
   the server to generate such confirmations since there is no flow
   control, i.e., the server can not determine whether a received
   request indicates that a previous response reached the client.

UDPのベースのアプリケーション(RPC、DNS)に、応答パケットが受け取られているときクライアントに可到達性確認を送らせるのは、比較的簡単です。 サーバがフロー制御が全くなくて以来のそのような確認を生成するのが、より難しくて、いくつかの場合、不可能である、すなわち、サーバは受信された要求が、前の応答がクライアントに届いたのを示すかどうか決定できません。

   Note that an implementation can not use negative upper-layer advise
   as a replacement for the Neighbor Unreachability Detection algorithm.
   Negative advise (e.g. from TCP when there are excessive
   retransmissions) could serve as a hint that the forward path from the

実現が否定的上側の層を使用できないというメモはNeighbor Unreachability Detectionアルゴリズムとの交換としてアドバイスします。 aがそれについて暗示するとき役立つことができた、ネガが、アドバイスする(例えば、過度の「再-トランスミッション」があるTCPから)フォワードパス

Narten, Nordmark & Simpson  Standards Track                    [Page 81]

RFC 1970       Neighbor Discovery for IP Version 6 (IPv6)    August 1996

Narten、Nordmark、およびシンプソンStandardsはバージョン6(IPv6)1996年8月にIPのために1970年のRFC隣人発見を追跡します[81ページ]。

   sender of the data might not be working.  But it would fail to detect
   when the path from the receiver of the data is not functioning
   causing, none of the acknowledgement packets to reach the
   dgement

データの送付者は働いていないかもしれません。 しかし、データの受信機からの経路がいつ引き起こすことでないかを機能している検出しないでしょう、dgementに達する確認応答パケットのいずれも

Narten, Nordmark & Simpson  Standards Track                    [Page 82]

Narten、Nordmark、およびシンプソン標準化過程[82ページ]

一覧

 RFC 1〜100  RFC 1401〜1500  RFC 2801〜2900  RFC 4201〜4300 
 RFC 101〜200  RFC 1501〜1600  RFC 2901〜3000  RFC 4301〜4400 
 RFC 201〜300  RFC 1601〜1700  RFC 3001〜3100  RFC 4401〜4500 
 RFC 301〜400  RFC 1701〜1800  RFC 3101〜3200  RFC 4501〜4600 
 RFC 401〜500  RFC 1801〜1900  RFC 3201〜3300  RFC 4601〜4700 
 RFC 501〜600  RFC 1901〜2000  RFC 3301〜3400  RFC 4701〜4800 
 RFC 601〜700  RFC 2001〜2100  RFC 3401〜3500  RFC 4801〜4900 
 RFC 701〜800  RFC 2101〜2200  RFC 3501〜3600  RFC 4901〜5000 
 RFC 801〜900  RFC 2201〜2300  RFC 3601〜3700  RFC 5001〜5100 
 RFC 901〜1000  RFC 2301〜2400  RFC 3701〜3800  RFC 5101〜5200 
 RFC 1001〜1100  RFC 2401〜2500  RFC 3801〜3900  RFC 5201〜5300 
 RFC 1101〜1200  RFC 2501〜2600  RFC 3901〜4000  RFC 5301〜5400 
 RFC 1201〜1300  RFC 2601〜2700  RFC 4001〜4100  RFC 5401〜5500 
 RFC 1301〜1400  RFC 2701〜2800  RFC 4101〜4200 

スポンサーリンク

-= 演算子

ホームページ製作・web系アプリ系の製作案件募集中です。

上に戻る